DC3 Publications
*Overview Paper: Barth et al. (2015) The Deep Convective Clouds and Chemistry (DC3) Field Campaign, Bull. Amer. Meteor. Soc.,doi: 10.1175/BAMS-D-13-00290.1.
2021
Brune, W. H., McFarland, P. J., Bruning, E., Waugh, S., MacGorman, D., Miller, D. O., Jenkins, J. M., Ren, X., Mao, J., and Peischl, J. (2021). Extreme oxidant amounts produced by lightning in storm clouds. Science. doi:10.1126/science.abg049.
DiGangi, E. A., Ziegler, C. L., & MacGorman, D. R. (2021). Lightning and secondary convection in the anvil of the May 29, 2012 Oklahoma supercell storm observed by DC3. J. Geophys. Res., 126, e2020JD033114. doi:10.1029/2020JD033114.
Mullendore, G. L., Barth, M. C., Klein, P. M., & Crawford, J. H. (2021). Broadening Impact of Field Campaigns: Integrating Meteorological and Chemical Observations, Bulletin of the American Meteorological Society, 102(3), E464-E475, doi:10.1175/BAMS-D-19-0216.1.
2020
Carter, T. S., Heald, C. L., Jimenez, J. L., Campuzano-Jost, P., Kondo, Y., Moteki, N., Schwarz, J. P., Wiedinmyer, C., Darmenov, A. S., da Silva, A. M., and Kaiser, J. W., 2020: How emissions uncertainty influences the distribution and radiative impacts of smoke from fires in North America, Atmos. Chem. Phys., 20, 2073–2097, doi:acp-20-2073-2020.
Chmielewski, V. C., MacGorman, D. R., Ziegler, C. L., DiGangi, E., Betten, D., & Biggerstaff, M. (2020). Microphysical and transportive contributions to normal and anomalous polarity subregions in the 29–30 May 2012 Kingfisher storm. J. Geophys. Res., 125, e2020JD032384. doi:10.1029/2020JD032384.
Miyazaki, K., Bowman, K., Sekiya, T., Eskes, H., Boersma, F., Worden, H., Livesey, N., Payne, V. H., Sudo, K., Kanaya, Y., Takigawa, M., and Ogochi, K., 2020: Updated tropospheric chemistry reanalysis and emission estimates, TCR-2, for 2005–2018, Earth Syst. Sci. Data, 12, 2223–2259, doi:10.5194/essd-12-2223-2020.
Pai, S. J., Heald, C. L., Pierce, J. R., Farina, S. C., Marais, E. A., Jimenez, J. L., Campuzano-Jost, P., Nault, B. A., Middlebrook, A. M., Coe, H., Shilling, J. E., Bahreini, R., Dingle, J. H., and Vu, K., 2020: An evaluation of global organic aerosol schemes using airborne observations, Atmos. Chem. Phys., 20, 2637–2665,doi:acp-20-2637-2020.
Phoenix, D. B., Homeyer, C. R., Barth, M. C., & Trier, S. B. (2020). Mechanisms responsible for stratosphere‐to‐troposphere transport around a mesoscale convective system anvil. J. Geophys. Res., 125, e2019JD032016. doi:10.1029/2019JD032016.
Takeishi, A., Storelvmo, T., & Fierce, L. (2020). Disentangling the microphysical effects of fire particles on convective clouds through a case study. J. Geophys. Res., 125, e2019JD031890. doi:10.1029/2019JD031890.
Waugh, S. M., Ziegler, C. L., & MacGorman, D. R. (2020). In situ microphysical observations of a multicell storm using a balloon‐borne video disdrometer during Deep Convective Clouds and Chemistry. J. Geophys. Res., 125. doi:10.1029/2020JD032394.
Zhang, A., Wang, Y., Zhang, Y., Weber, R. J., Song, Y., Ke, Z., and Zou, Y., 2020: Modeling the global radiative effect of brown carbon: a potentially larger heating source in the tropical free troposphere than black carbon, Atmos. Chem. Phys., 20, 1901–1920, doi:10.5194/acp-20-1901-2020.
2019
Barth, M. C., Rutledge, S. A., Brune, W. H., & Cantrell, C. A. (2019). Introduction to the deep convective clouds and chemistry (DC3) 2012 studies. J. Geophys. Res., 124, 8095– 8103, doi:10.1029/2019JD030944.
Carey LD, Schultz EV, Schultz CJ, Deierling W, Petersen WA, Bain AL, Pickering KE., 2019: An Evaluation of Relationships between Radar-Inferred Kinematic and Microphysical Parameters and Lightning Flash Rates in Alabama Storms. Atmosphere. 2019; 10(12):796. doi:10.3390/atmos10120796.
Chen, X., Millet, D. B., Singh, H. B., Wisthaler, A., Apel, E. C., Atlas, E. L., Blake, D. R., Bourgeois, I., Brown, S. S., Crounse, J. D., de Gouw, J. A., Flocke, F. M., Fried, A., Heikes, B. G., Hornbrook, R. S., Mikoviny, T., Min, K.-E., Müller, M., Neuman, J. A., O'Sullivan, D. W., Peischl, J., Pfister, G. G., Richter, D., Roberts, J. M., Ryerson, T. B., Shertz, S. R., Thompson, C. R., Treadaway, V., Veres, P. R., Walega, J., Warneke, C., Washenfelder, R. A., Weibring, P., and Yuan, B., 2019: On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America, Atmos. Chem. Phys., 19, 9097–9123, doi:10.5194/acp-19-9097-2019.
Davenport, C. E., C. L. Ziegler, and M. L. Biggerstaff, 2019: Creating a more realistic idealized supercell thunderstorm evolution via incorporation of base-state environmental variability, Monthly Wea. Rev., 147, 4177-4198, doi:10.1175/MWR-D-18-0447.1.
Davis, T. C., Rutledge, S. A., & Fuchs, B. R. (2019). Lightning location, NOx production, and transport by anomalous and normal polarity thunderstorms. J. Geophys. Res., 124, 8722– 8742, doi:10.1029/2018JD029979.
Espinosa, W. R., Vanderlei Martins, J., Remer, L. A., Dubovik, O., Lapyonok, T., Fuertes, D., et al. (2019). Retrievals of aerosol size distribution, spherical fraction, and complex refractive index from airborne in situ angular light scattering and absorption measurements. J. Geophys. Res., 124, 7997– 8024. doi:10.1029/2018JD030009.
Froyd, K. D., Murphy, D. M., Brock, C. A., Campuzano-Jost, P., Dibb, J. E., Jimenez, J.-L., Kupc, A., Middlebrook, A. M., Schill, G. P., Thornhill, K. L., Williamson, C. J., Wilson, J. C., and Ziemba, L. D., 2019: A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry, Atmos. Meas. Tech., 12, 6209–6239, doi:10.5194/amt-12-6209-2019.
Li, Y., Pickering, K. E., Barth, M. C., Bela, M. M., Cummings, K. A., & Allen, D. J. (2019). Wet Scavenging in WRF‐Chem Simulations of Parameterized Convection for a Severe Storm during the DC3 Field Campaign, J. Geophys. Res., 124, 7413– 7428. doi:10.1029/2019JD030484.
Liao, J., Hanisco, T. F., Wolfe, G. M., St. Clair, J., Jimenez, J. L., Campuzano-Jost, P., Nault, B. A., Fried, A., Marais, E. A., Gonzalez Abad, G., Chance, K., Jethva, H. T., Ryerson, T. B., Warneke, C., and Wisthaler, A., 2019: Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance, Atmos. Chem. Phys., 19, 2765–2785, doi:10.5194/acp-19-2765-2019.
Watson-Parris, D., Schutgens, N., Reddington, C., Pringle, K. J., Liu, D., Allan, J. D., Coe, H., Carslaw, K. S., and Stier, P., 2019: In situ constraints on the vertical distribution of global aerosol, Atmos. Chem. Phys., 19, 11765–11790, doi:10.5194/acp-19-11765-2019.
Zawadowicz, M. A., Froyd, K. D., Perring, A. E., Murphy, D. M., Spracklen, D. V., Heald, C. L., Buseck, P. R., and Cziczo, D. J., 2019: Model-measurement consistency and limits of bioaerosol abundance over the continental United States, Atmos. Chem. Phys., 19, 13859–13870, doi:10.5194/acp-19-13859-2019.
Zhu, Q., Laughner, J. L., and Cohen, R. C., 2019: Lightning NO2 simulation over the contiguous US and its effects on satellite NO2 retrievals, Atmos. Chem. Phys., 19, 13067–13078, doi:10.5194/acp-19-13067-2019.
2018
Aldhaif, A. M., Stahl, C., Braun, R. A., Moghaddam, M. A., Shingler, T., Crosbie, E., et al. (2018). Characterization of the real part of dry aerosol refractive index over North America from the surface to 12 km. Journal of Geophysical Research: Atmospheres, 123, 8283–8300, doi:10.1029/2018JD028504.
Bela, M. M., Barth, M. C., Toon, O. B., Fried, A., Ziegler, C., Cummings, K. A., et al. (2018). Effects of scavenging, entrainment, and aqueous chemistry on peroxides and formaldehyde in deep convective outflow over the central and Southeast United States. Journal of Geophysical Research: Atmospheres, 123, 7594–7614, doi:10.1029/2018JD028271.
Brune, W. H., X. Ren, L. Zhang, J. Mao, D. O. Miller, B. E. Anderson, D. R. Blake, R. C. Cohen, G. S. Diskin, S. R. Hall, T. F. Hanisco, L. G. Huey, B. A. Nault, J. Peischl, I. Pollack, T. B. Ryerson, T. Shingler, A. Sorooshian, K. Ullmann, A. Wisthaler, and P. J. Wooldridge, 2018: Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study, Atmos. Chem. Phys., 18, 14493-14510, doi:acp-18-14493-2018.
Chmielewski, V., Bruning, E., & Ancell, B., 2018: Variations of thunderstorm charge structures in West Texas on 4 June 2012. Journal of Geophysical Research: Atmospheres, 123, 9502–9523, doi:10.1029/2018JD028779.
Espinosa, W. R., Martins, J. V., Remer, L. A., Puthukkudy, A., Orozco, D., and Dolgos, G., 2018: In situ measurements of angular-dependent light scattering by aerosols over the contiguous United States, Atmos. Chem. Phys., 18, 3737-3754, doi:10.5194/acp-18-3737-2087.
Li, Y., Pickering, K. E., Barth, M. C., Bela, M. M., Cummings, K. A., & Allen, D. J., 2018: Evaluation of parameterized convective transport of trace gases in simulation of storms observed during the DC3 field campaign. Journal of Geophysical Research: Atmospheres, 123, 11,238–11,261, doi:10.1029/2018JD028779.
Mecikalski, R. M., & Carey, L. D. (2018). Radar reflectivity and altitude distributions of lightning as a function of IC, CG, and HY flashes: Implications for LNOx production. Journal of Geophysical Research: Atmospheres, 123, 12,796–12,813, doi:10.1029/2018JD029263.
Takeishi, A., & Storelvmo, T. (2018). A study of enhanced heterogeneous ice nucleation in simulated deep convective clouds observed during DC3. Journal of Geophysical Research: Atmospheres, 123, 13,396– 13,420, doi:10.1029/2018JD028889.
Treadaway, V., Heikes, B. G., McNeill, A. S., Silwal, I. K. C., and O'Sullivan, D. W., 2018: Measurement of formic acid, acetic acid and hydroxyacetaldehyde, hydrogen peroxide, and methyl peroxide in air by chemical ionization mass spectrometry: airborne method development, Atmos. Meas. Tech., 11, 1901-1920, doi:10.5194/amt-11-1901-2018.
Um, J., McFarquhar, G. M., Stith, J. L., Jung, C. H., Lee, S. S., Lee, J. Y., Shin, Y., Lee, Y. G., Yang, Y. I., Yum, S. S., Kim, B.-G., Cha, J. W., and Ko, A.-R., 2018: Microphysical characteristics of frozen droplet aggregates from deep convective clouds, Atmos. Chem. Phys., 18, 16915-16930, doi:10.5194/acp-18-16915-2018.
Waugh, S. M., C. L. Ziegler, and D. R. MacGorman, 2018: In situ microphysical observations of the 29-30 May 2012 Kingfisher, OK supercell with a balloon-borne video disdrometer. J. Geophys. Res. Atmos., 123, doi.org/10.1029/2017JD027623.
2017
Diao, M., G. Bryan, H. Morrison, and J. Jensen, 2017: Ice nucleation parameterization and relative humidity distribution in idealized squall line simulations. J. Atmos. Sci. 74, 2761–2787, https://doi.org/10.1175/JAS-D-16-0356.1.
D'Alessandro, J. J. M. Diao, C. Wu, X. Liu, M. Chen, H. Morrison, T. Eidhammer, J. B. Jensen, A. Bansemer, M. A. Zondlo, and J. P. DiGangi, 2017: Dynamical conditions of ice supersaturation and ice nucleation in convective systems: A comparative analysis between in situ aircraft observations and WRF simulations, J. Geophys. Res., 122, 2844-2866, doi:10.1002/2016JD025994.
Mecikalski, R. M., Bitzer, P. M., & Carey, L. D. (2017). Why flash type matters: A statistical analysis. Geophysical Research Letters, 44, 9505–9512, doi:10.1002/2017GL075003.
Mecikalski, R. M., and Carey, L. D. (2017). Lightning characteristics relative to radar, altitude and temperature for a multicell, MCS and supercell over northern Alabama, Atmospheric Research, 191, 128-140, doi:10.1016/j.atmosres.2017.03.001.
Laughner, J. L. and Cohen, R. C., 2017: Quantification of the effect of modeled lightning NO2 on UV–visible air mass factors, Atmos. Meas. Tech., 10, 4403-4419, doi:10.5194/amt-10-4403-2017.
Li, Y. K. E. Pickering, D. J. Allen, M. C. Barth, M. M. Bela, K. A. Cummings, L. D. Carey, R. M. Mecikalski, A. O. Fierro, T. L. Campos, A. J. Weinheimer, G. S. Diskin, and M. I. Biggerstaff, 2017: Evaluation of Deep Convective Transport in Storms from Different Convective Regimes during the DC3 Field Campaign Using WRF-Chem with Lightning Data Assimilation, J. Geophys. Res. Atmos., 122, doi:10.1002/2017JD026461.
Mecikalski, R. M., P. M. Bitzer, and L. D. Carey, 2017: Why Flash Type Matters: A Statistical Analysis, Geophys. Res. Lett., 44, 9505-9512, doi:10.1002/2017GL075003.
Mecikalski, R. M. and L. D. Carey, 2017: Lightning characteristics relative to radar, altitude and temperature for a multicell, MCS and supercell over northern Alabama, Atmos. Res., 191, 128-140, doi.org/10.1016/j.atmosres.2017.03.001.
Nault, B. A., J. L. Laughner, P. J. Wooldridge, J. D. Crounse, J. Dibb, G. Diskin, J. Peischl, J. R. Podolske, I. B. Pollack, T. B. Ryerson, E. Scheuer, P. O. Wennberg, and R. C. Cohen, 2017: Lightning NOx Emissions: Reconciling Measured and Modeled Estimates With Updated NOx Chemistry, Geophys. Res. Lett., 44, 9479-9488, 10.1002/2017GL074436.
Phoenix, D. B., C. R. Homeyer, and M. C. Barth (2017), Sensitivity of simulated convection‐driven stratosphere‐troposphere exchange in WRF‐Chem to the choice of physical and chemical parameterization, Earth and Space Science, 4, 454–471, doi:10.1002/2017EA000287.
Schwarz, J. P., B. Weinzierl, B. H. Samset, M. Dollner, K. Heimerl, M. Z. Markovic, A. E. Perring, and L. Ziemba (2017), Aircraft measurements of black carbon vertical profiles show upper tropospheric variability and stability, Geophys. Res. Lett., 44, 1132–1140, doi:10.1002/2016GL071241.
Sorooshian, A., T. Shingler, E. Crosbie, M. C. Barth, C. R. Homeyer, P. Campuzano-Jost, D. A. Day, J. L. Jimenez, K. L. Thornhill, L. D. Ziemba, D. R. Blake, and A. Fried, 2017: Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3, J. Geophys. Res. Atmos., 122, doi:10.1002/2017JD026638.
Zhang, Y., H. Forrister, J. Liu, J. Dibb, B. Anderson, J. P. Schwarz, A. E. Perring, J. L. Jimenez, P. Campuzano-Jost, Y. Wang, A. Nenes and R. J. Weber, 2017: Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere, Nature Geoscience, 10, 486–489, doi:10.1038/ngeo2960.
2016
Lang, T. J., W. A. Lyons, S. A. Cummer, B. R. Fuchs, B. Dolan, S. A. Rutledge, P. Krehbiel, W. Rison, M. Stanley and T. Ashcraft, 2016: Observations of two sprite-producing storms in Colorado, J. Geophys. Res. Atmos., 121, doi: 10.1002/2016JD025299.
2015
Basarab, B. M., S. A. Rutledge, and B. R. Fuchs, 2015: An improved lightning flash rate parameterization developed from Colorado DC3 thunderstorm data for use in cloud-resolving chemical transport models. J. Geophys. Res. Atmos., 120, doi: 10.1002/2015JD023470.
Bruning, E. C., and R. J. Thomas, 2015: Lightning channel length and flash energy determined from moments of the flash area distribution. J. Geophys. Res. Atmos., 120, 8925–8940, doi:10.1002/2015JD023766.
Fuchs, B. R., S. A. Rutledge, E. C. Bruning, J. R. Pierce, J. K. Kodros, T. J. Lang, D. R. MacGorman, P. R. Krehbiel, and W. Rison (2015), Environmental controls on storm intensity and charge structure in multiple regions of the continental United States. J. Geophys. Res. Atmos., 120, 6575–6596. doi: 10.1002/2015JD023271.
Nault, B. A., C. Garland, P. J. Wooldridge, W. H. Brune, P. Campuzano-Jost, J. D. Crounse, D. A. Day, J. Dibb, S. R. Hall, L. G. Huey, J. L. Jimenez, X. Liu, J. Mao, T. Mikoviny, J. Peischl, I. B. Pollack, X. Ren, T. B. Ryerson, E. Scheuer, K. Ullmann, P. O. Wennberg, A. Wisthaler, L. Zhang, and R. C. Cohen, 2015: Observational Constraints on the Oxidation of NOx in the Upper Troposphere. Journal of Physical Chemistry, A, doi: 10.1021/acs.jpca.5b07824.
Nault, B. A., C. Garland, S. E. Pusede, P. J. Wooldridge, K. Ullmann, S. R. Hall, and R. C. Cohen, 2015: Measurements of CH3O2NO2 in the upper troposphere, Atmos. Meas. Tech., 8, 987-997, doi: 10.5194/amt-8-987-2015.
Waugh, S., C. Ziegler, D. MacGorman, S. Fredrickson, D. Kennedy, and W. Rust, 2015: A balloonborne particle size, imaging, and velocity probe for in situ microphysical measurements. J. Atmos. Oceanic Technol., 32, 1562–1580.
2014
Dolgos, G., and J. V. Martins, 2014: Polarized Imaging Nephelometer for in situ airborne measurements of aerosol light scattering. Opt. Express, 22, 21972-21990, doi: 10.1364/OE.22.021972.
Dorsi, S. W., L. E. Kalnajs, D. W. Toohey, and L. M. Avallone, 2014: A fiber-coupled laser hygrometer for airborne total water measurement. Atmos. Meas. Tech., 7, 215-223, doi: 10.5194/amt-7-215-2014.
Hanlon, C. J., A. A. Small, S. Bose, G. S. Young, and J. Verlinde, 2014: Automated decision algorithm applied to a field experiment with multiple research objectives: The DC3 campaign, J. Geophys. Res. Atmos., 119, 527-11,542, doi:10.1002/2014JD021922.
Hanlon, C. J., G. S. Young, J. Verlinde, A. A. Small, and S. Bose, 2014: Probabilistic forecasting for isolated thunderstorms using a genetic algorithm: The DC3 campaign. J. Geophys. Res. Atmos., 119, 65-74, doi:10.1002/2013JD020195.
Homeyer, C. R., L. L. Pan, S. W. Dorsi, L. M. Avallone, A. J. Weinheimer, A. S. O'Brien, J. P. Digangi, M. A. Zondlo, T. B. Ryerson, G. S. Diskin, and T. L. Campos, 2014: Convective transport of water vapor into the lower stratosphere observed during double-tropopause events, J. Geophys. Res. Atmos., 119, 10,941-10,958, doi:10.1002/2014JD021485.
Lang, T. J., S. A. Rutledge, B. Dolan, P. Krehbiel, W. Rison, and D. T. Lindsey, 2014: Lightning in Wildfire Smoke Plumes Observed in Colorado during Summer 2012. Mon. Wea. Rev., 142, 489-507, doi:10.1175/MWR-D-13-00184.1.
Mullendore, G. L., and J. S. Tilley, 2014: Integration of Undergraduate Education and Field Campaigns: A Case Study from Deep Convective Clouds and Chemistry. Bull. Amer. Meteor. Soc., 95, 1595-1601, doi: 10.1175/BAMS-D-13-00209.1.
Pan, L. L., C. R. Homeyer, S. Honomichl, B. A. Ridley, M. Weisman, M. C. Barth, J. W. Hair, M. A. Fenn, C. Butler, G. S. Diskin, J. H. Crawford, T. B. Ryerson, I. Pollack, J. Peischl, and H. Huntrieser, 2014: Thunderstorms enhance tropospheric ozone by wrapping and shedding stratospheric air. Geophys. Res. Lett., 41, 7785-7790, doi:10.1002/2014GL061921.
Schroeder, J. R., L. L. Pan, T. Ryerson, G. Diskin, J. Hair, S. Meinardi, I. Simpson, B. Barletta, N. Blake, and D. R. Blake, 2014: Evidence of mixing between polluted convective outflow and stratospheric air in the upper troposphere during DC3, J. Geophys. Res. Atmos., 119, 11, 477-11, 491, doi: 10.1002/2014JD022109.
Stith, J. L., L. M. Avallone, A. Bansemer, B. Basarab, S. W. Dorsi, B. Fuchs, R. P. Lawson, D. C. Rogers, S. Rutledge, and D. W. Toohey, 2014: Ice particles in the upper anvil regions of midlatitude continental thunderstorms: the case for frozen-drop aggregates, Atmos. Chem. Phys., 14, 1973-1985, doi:10.5194/acp-14-1973-2014.