Multi-scale modeling of air quality and mechanism comparison with MUSICA

MUSICA: the MUlti-Scale Infrastructure for Chemistry and Aerosols

Louisa Emmons, Mary Barth, Gabriele Pfister, Andrew Conley, John Orlando, Alma Hodzic, Nick Davis, Benjamin Gaubert, Simone Tilmes, Guy Brasseur

Atmospheric Chemistry Observations and Modeling Laboratory
National Center for Atmospheric Research

November 17, 2020
Motivation for a new modeling infrastructure

• To aid decision-makers, atmospheric chemistry models need to:
 – Couple with other Earth system components
 – Cover scales from urban/local to regional to global
 – Extend from surface to top of atmosphere
 – Predict on time scales from hours – weeks – seasonal – decadal
 – Connect atmospheric composition with weather and climate

• Future modeling systems will need the ability to:
 – Change spatial scales in a consistent manner
 – Resolve multiple spatial scales in a single simulation
 – Couple model components that represent different Earth system processes
 – Easily mix and match model components for specific applications
Effect of megacities on global atmospheric composition and climate

Disconnected spatial and temporal scales, separate models for local/regional and global impacts.

A fully coupled system accounts for detailed chemistry/ emissions over megacities, and enables quantifying their impacts on remote regions (e.g., Arctic) and the global atmosphere.

Global models providing boundary regional models only consider on are inconsistent in nature.

<table>
<thead>
<tr>
<th>Past and Current Approach</th>
<th>Future Approach including MUSICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemispheric to global impacts without resolving convection or surface air quality over the monsoon region.</td>
<td>More realistic predictions by resolving local air quality and convection in monsoon region consistently with global impacts.</td>
</tr>
</tbody>
</table>

Exploiting the future constellation of geostationary satellites for atmospheric composition

Global analysis at resolutions coarser than that of observations or regional analysis without considering matching measurement resolution over the key regions together with global feedbacks results in more error.

Gravity wave processes impacting stratosphere and mesosphere temperature and mixing

Global simulations with general circulation, chemistry, and climate dependent on parameterized wave sources, characteristics, and transport; or costly high-resolution "nature runs."

Better resolution of the gravity wave spectrum within the refined region and a more internally consistent gravity wave parameterization on the global grid.

Air quality (AQ) under a changing climate

Use downscaling methods to provide meteorological and chemical initial and boundary conditions to a regional AQ model.

Conduct an ensemble of simulations under various future scenarios with a single self-consistent model with sufficient resolution to simulate key AQ metrics.

Feedback loop of climate change on trace gas and aerosol gas concentrations

- High resolution over impact regions but coarse resolution over aerosol source regions and/or from lateral boundary conditions leads to poor aerosol prediction and affects feedback on extreme event predictions.
- High resolution enabled over impacts and aerosol source regions in a consistent framework with fully enabled feedback of meteorology, chemistry, and dynamics and between ocean and atmosphere.

Aerosols seeding extreme events (e.g., hurricanes)

- Coarse vertical and spatial resolution numerical diffusion prevents small structure of the troposphere.
- Global simulations with coarse resolution over high-emissions regions impact the accuracy of simulated pollutant life cycles and land–sea–atmosphere exchange.

Top-down emission estimates

- Either coarse resolution or inconsistency in modeling and emissions within constraining sources and sinks of long-lived species.
- Improved accuracy and consistency by simulating transport and chemistry of long-lived species consistently across all scales.

Land surface coupling

- Coarser-resolution climate models are limited in their representation of land–atmosphere couplings, such as biogenic emissions and dry deposition of atmospheric constituents. Many regional models lack full coupling between land and atmosphere processes.
- Land–atmosphere coupling and regionally finer resolution improves representation of meteorology, biogenic emissions and wet and dry deposition (e.g., simulating effect of acid rain on vegetation).
MUSICA: MUlti-Scale Infrastructure for Chemistry & Aerosols

A new model-independent infrastructure, which will enable chemistry and aerosols to be simulated at different resolutions in a coherent fashion

Will facilitate use of a variety of chemistry schemes, physics parameterizations and atmospheric models
Coupled to other earth system component models (land, ocean, sea ice, etc.)
Whole atmosphere framework: troposphere to thermosphere

https://www2.acom.ucar.edu/sections/multi-scale-chemistry-modeling-musica

MUSICA Vision paper published in BAMS (Pfister et al., 2020: https://doi.org/10.1175/BAMS-D-19-0331.1)
Choices for variable resolution atmosphere models

Spectral Element (cubed sphere)

MPAS (hexagonal mesh)

Currently running in CAM

Non-hydrostatic allowing for finer scales
Community Involvement Welcome

We invite the community to participate in development, evaluation and application of MUSICA:
https://www2.acom.ucar.edu/sections/multi-scale-chemistry-modeling-musica

Working groups:
• Model Architecture
• Emissions and Deposition
• Chemical Schemes
• Aerosols
• Physics, Transport, sub-scale Processes
• Whole Atmosphere
• Evaluation and Data Assimilation

Visit MUSICA website to join working groups
Implementation plans are being developed
MUSICA-V0 is a configuration of the Community Earth System Model (CESM):

CAM-chem (Community Atmosphere Model with Chemistry)

With Spectral Element (SE) dynamical core and Regional Refinement (RR)

- **CAM-chem-SE-RR**

At finer resolution, emissions and chemistry are more accurately represented

Pollutants are simulated on human exposure-relevant scales

Global feedbacks are directly included

Most of the grid points are in refined region, so no additional cost to simulate the whole globe
Air quality simulations are improved with emissions on a more realistic scale:

- Segregates urban and rural emissions
- Represents fire plumes

NO emissions

FV 0.9° x 1.25°

SE-RR ~14km

CO at CAM-chem RR surface layer (ppb): 2019-08-28-15:00 UTC
Impact of resolution on chemistry

1/8-degree (~14 km) compared to 1-degree (~100 km) over continental US:
Hourly output of surface ozone – Aug 9, 2013 18Z
• General features of distribution the same in RR as 1-deg
• Urban pollution more resolved, with lower ozone in rural regions
• Higher ozone mixing ratios in continental outflow (over Atlantic, Gulf of Mexico, Baja California)

This configuration is available in CESM2.2
Model description and evaluation papers in prep.
by Becky Schwantes and Forrest Lacey
Online tutorial is being developed:
https://www2.acom.ucar.edu/workshop/musica-tutorial-2020
MUSICA-V0 User-specified Grids

Tools released with CESM allow users to create grids with arbitrary refined regions for use in MUSICA-V0.
Model-Independent Chemistry Module (MICM)

Will allow use of the same chemistry in different atmosphere models and offline meteorology (CTM)
Also allows easily changing the chemical mechanism
A box model using MICM is being developed: MusicBox
MusicBox: MICM in a box model

- Load a mechanism file
- Modify mechanism (species, reactions, etc.)
- Add information about species (e.g., Henry’s Law constants), document reactions (references)
- Set model conditions (initial, time-varying)
- Run box model
- Plot model results (compare 2 mechanisms)
- Download results

Community use & development welcome: https://wiki.ucar.edu/display/MusicBox/, https://github.com/NCAR/MusicBox
Applications for MusicBox

Evaluate and compare chemical mechanisms
- Different complexity (MOZART-T1, –T2 and MOZART-2)
- Different origin (SAPRC, GEOS-Chem, CB)

-> Community input welcome!

Comparison of MOZART mechanisms of different complexity
[results from CAM-chem]
GEOS-Chem as a chemical module in CESM
Daniel Jacob (Harvard), Sebastian Eastham (MIT)

Coupling of GEOS-Chem to CESM is underway, with a functioning prototype in place. An opportunity to address dependencies of chemistry on physics in CESM. Enabling greater modularity, e.g., for dry deposition, wet scavenging.

HEMCO-CESM Architecture

This includes implementation of the HEMCO emissions module in CESM.

Enabling emissions data to be acquired from disk at arbitrary resolution, conservatively regridded.
MELODIES for MUSICA: A modular framework to compare model results and observations of atmospheric chemistry [Funded by NSF Earthcube]

MELODIES: Model Evalulation using Observations, Diagnostics and Experiments Software

- Modular framework
- User-friendly interface
- User Guides will be produced
- Tutorial for community, targeting students and postdocs

Community input requested
MUSICA Goals

• To be developed collaboratively with university and government researchers
• To become the next-generation community infrastructure for atmospheric chemistry & aerosol research
• To deepen existing, and establish new, working relations of the research community with a variety of users ranging from the research community to stakeholders
• To contribute to both advancing the science and to providing relevant and actionable information for the development of mitigation policies or warning systems

Community Involvement

Visit the NCAR ACOM MUSICA website
https://www2.acom.ucar.edu/sections/multi-scale-chemistry-modeling-musica

To:
• Join email list to receive MUSICA updates
• Join working groups
• Learn about MUSICA and MusicBox Tutorials
• Contribute to MELODIES