# MOPITT

# (Measurements of Pollution in the Troposphere) *Version 8* Product User's Guide

MOPITT Algorithm Development Team\* Atmospheric Chemistry Observations and Modeling Laboratory National Center for Atmospheric Research Boulder, CO 80307

Last Revised December, 2018

\*Correspond to Merritt Deeter at mnd@ucar.edu

# **Table of Contents**

| 1 MOPITT Version 8 Product Highlights                       | 3  |
|-------------------------------------------------------------|----|
| 2 Review of Earlier MOPITT Products                         | 3  |
| 3 Features of the MOPITT Version 8 Retrieval Algorithm      | 4  |
| 3.1 Radiative Transfer Modeling                             | 4  |
| 3.2 Retrieval Grid.                                         | 4  |
| 3.3 Meteorological Fields                                   | 4  |
| 3.4 Cloud Detection                                         | 5  |
| 3.5 Radiance Bias Correction                                | 6  |
| 3.6 NIR Calibration                                         | 6  |
| 4 Product Format and Content                                | 7  |
| 4.1 Level 1 Data                                            | 7  |
| 4.2 Level 2 Data                                            | 7  |
| 4.3 Level 3 Data                                            | 8  |
| 5 Data Analysis Considerations                              | 8  |
| 5.1 Data Quality                                            | 8  |
| 5.2 Data Averaging                                          | 9  |
| 5.3 Inclusion of A Priori                                   | 10 |
| 5.4 Data Filtering                                          | 10 |
| 5.5 Analysis of Retrieved CO Total Column Values            | 11 |
| 6 References                                                | 12 |
| Appendices                                                  | 13 |
| A. Tabulated Contents of V8 Level 2 Product Files           |    |
| B. Tabulated Contents of V8 Level 3 Product Files           | 18 |
| C. Sample IDL Code for Opening and Reading V8 Level 2 files | 21 |
| D. Sample NCL Code for Opening and Reading V8 Level 2 files |    |

## **1** MOPITT Version 8 Product Highlights

This guide describes new product features in the MOPITT Version 8 (V8) Level 2 products for tropospheric carbon monoxide (CO). This comprehensive version of the User's Guide should serve as a "standalone" document, and includes relevant material from earlier User's Guides. Any updates to this document will be announced on the MOPITT News webpage at <u>https://www2.acom.ucar.edu/mopitt/news</u>.

Featured improvements in the V8 retrieval product include:

- Updated spectroscopic data for H<sub>2</sub>O and N<sub>2</sub>. Details in <u>Sec. 3.1</u>.
- Use of MODIS Collection 6.1 cloud mask files. Details in <u>Sec. 4</u>.
- Parameterized radiance bias correction. Details in <u>Sec. 3.5</u>.
- Improved method for calculating total column averaging kernels. Details in <u>Sec. 5.5</u>.

## 2 **Review of Earlier MOPITT Products**

Following the launch of Terra near the end of 1999, the MOPITT Version 3 (V3) product became available in 2000 [1]. This was the first satellite dataset for tropospheric CO featuring global coverage. This product was followed in 2009 by the Version 4 (V4) product [2]. Significant improvements first introduced in the V4 product included (1) temporally and geographically variable a priori for CO based on the chemical transport model MOZART, (2) representation of CO variability by log-normal statistics, (3) extension of the forward radiative transfer model MOPFAS to simulate much higher CO concentrations, and (4) improved observation-based a priori values for surface emissivity. Processing of the V4 product ended at the end of 2012. The V5 product became available in 2011 in three retrieval configurations: thermal infrared-only ("TIR-only"), near infrared-only ("NIR-only") and multispectral ("TIR/NIR"). (The previous V3 and V4 products were TIR-only products.) V5 retrieval products also benefited from a new time-dependent radiative transfer model to reduce the influence of long-term instrumental changes on retrieval biases (i.e., "bias drift"). The V5 product was validated using a variety of in-situ and satellite datasets [3,4]. The V6 product was released in 2013 and featured (1) correction of a systematic geolocation error, (2) use of the MERRA (Modern-Era Retrospective Analysis For Research And Applications) reanalysis for needed meteorological fields and (3) an updated model-based a priori for CO [5]. Features introduced in the V7 product which became available in 2016 included (1) representation of increasing atmospheric concentrations of N<sub>2</sub>O, (2) use of meteorological fields from the MERRA-2 reanalysis and (3) an improved NIR calibration method [6].

# **3** Features of the MOPITT Version 8 Retrieval Algorithm

Improvements to the content of the V8 retrieval products are described in the following section. Significant changes in the V8 product are emphasized in **bold** text.

#### 3.1 Radiative Transfer Modeling

Improvements made to the operational radiative transfer model for V7 were described in [6]. For V8, spectroscopic data for both H<sub>2</sub>O and N<sub>2</sub> were separately updated. Water vapor continuum absorption in the V8 operational radiative transfer model is based on the MT\_CKD version 3.2 spectroscopic model from AER [7]. Water vapor continuum absorption in earlier MOPITT radiative transfer models was based on MT\_CKD version 1.0. The radiative effects of molecular nitrogen (N<sub>2</sub>), which were not previously represented, are now derived from the line-by-line model GENLN3 [8]. In addition, the globally-fixed concentration of CO<sub>2</sub> assumed in the operational radiative transfer model was increased to 410 ppm. The operational radiative transfer model for V8 is based on HITRAN12, which is the same version of HITRAN used for MOPITT V7 processing.

#### 3.2 Retrieval Grid

V8 retrieved profiles are expressed on the same ten-level grid (surface, 900 hPa, 800 hPa, ..., 100 hPa) used for V4, V5, V6 and V7 products. For V4 products, each retrieval level was assigned to a layer centered on that level, with a weighting that tapered to zero at the adjacent retrieval levels. For V5, V6, V7 and V8 products, in contrast, each retrieval level simply corresponds to a uniformly-weighted layer immediately above that level. For example, for retrievals where the surface pressure exceeds 900 hPa, the V7 surface-level retrieval product corresponds to the mean volume mixing ratio over the layer between the surface and 900 hPa. Thus, when comparing MOPITT profiles with model results, we suggest first applying simple (unweighted) averaging to the model results in the layers above each retrieval level. (For the topmost MOPITT retrieval level at 100 hPa, the uniform-VMR layer extends from 100 hPa to 50 hPa. Assumed VMR values in the layer from 50 hPa to TOA are based on the CAM-chem model climatology and are fixed.)

#### 3.3 Meteorological Fields

For each observation at a particular time and geographic location, the MOPITT retrieval algorithm requires temperature and water vapor profiles as well as a priori surface temperature values. For V6 processing, meteorological profiles were derived from the NASA MERRA reanalysis product (<u>http://gmao.gsfc.nasa.gov/reanalysis/MERRA/</u>). For all V7 and V8 products, meteorological profiles are extracted from the improved MERRA-2 product. Generally higher quality retrieval results are expected using MERRA-2 due to the assimilation of more satellite datasets (e.g., IASI) and other improvements.

#### 3.4 Cloud Detection

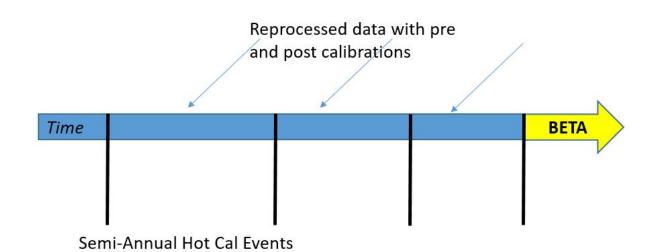
Only MOPITT observations made in clear sky conditions are used in Level 2 retrieval processing. The clear/cloudy determination is based both on MOPITT's thermal-channel radiances and the MODIS cloud mask.

For V8, two changes have been made with respect to cloud detection. First, V8 products for the entire MOPITT mission are produced using MODIS Collection 6.1 cloud mask files. (Differences between Collection 6 and Collection 6.1 MODIS cloud products are documented in [9]). Second, due to changes in the radiative transfer model described in Sec. 3.1, the threshold value used to test the MOPITT Channel 7 A signal for cloudiness was increased from 0.955 to 1.000. This value was selected to achieve similar rates of clear-sky determinations for V7 and V8 processing.

The outcome of the MOPITT cloud detection algorithm for a particular pixel can be determined using the "CloudDescription" diagnostic in the Level 2 files. The Cloud Description diagnostic values (1-6) are defined as follows. A value of 1 means "MOPCLD only clear, thermal channels only," a value of 2 means "MOPCLD and MODIS cloud mask agree on clear," a value of 3 means "MODIS cloud mask only clear," a value of 4 means "MOPCLD overriding MODIS cloud mask over low clouds" and a value of 5 means "MODIS cloud mask only, clear over polar regions." Finally, a value of 6 is assigned to night and day ocean scenes where the MODIS cloud mask-based tests indicate that the area was cloudy (with the exception of scenes with low clouds) but the test based on MOPITT's thermal-channel radiances finds that the area was clear. This last class was first introduced in the V7 product. Like previous versions, the MODIS cloud mask-based component of the V8 cloud detection algorithm passes MOPITT pixels with a maximum cloud fraction of 5%.

A diagnostic is also provided for each retrieval in the Level 2 product file to statistically describe the cloud test results for the set of MODIS Cloud Mask pixels matched to each MOPITT pixel. These diagnostics may be of use for analyzing potential retrieval biases associated with particular types of clouds. Elements of the 10-element "MODIS Cloud Diagnostics" floating point vector indicate:

- (1) Number of "determined" MODIS pixels
- (2) Percentage of cloudy MODIS pixels
- (3) Percentage of clear MODIS pixels
- (4) Average value of "sun glint" MODIS flag
- (5) Average value of "snow/ice background" MODIS flag
- (6) Average value of "non-cloud obstruction" MODIS flag
- (7) Average value of "IR threshold test" MODIS flag
- (8) Average value of "IR temperature difference tests" MODIS flag
- (9) Average value of "visible reflectance test" MODIS flag
- (10) Fraction of "determined" MODIS pixels


Users are referred to [6] for more information regarding details of the MODIS cloud mask tests.

#### 3.5 Radiance Bias Correction

The MOPITT Level 2 processor exploits a set of radiance-bias correction factors to compensate for relative biases between (1) simulated radiances calculated by the operational radiative transfer model and (2) actual calibrated Level 1 radiances. Without some form of compensation, radiance biases produce biases in the retrieved CO profiles. Radiance bias correction factors compensate for a variety of potential bias sources including errors in instrumental specifications, forward model errors, spectroscopy errors, and geophysical errors. For V8, radiance bias correction is based on a new parameterization involving the date of observation and water vapor total column (derived from MERRA-2 water vapor profiles). Preliminary V8 validation results indicate that this strategy successfully reduces long-term bias drift and retrieval bias geographical variability. Coefficients used to correct radiance biases were obtained through a series of experiments in which long-term bias drift was evaluated using the NOAA aircraft profiles (primarily over North America) and retrieval bias geographical variability was analyzed using profiles from the five phases of the HIPPO field campaign. Radiance bias correction factors used in the processing of each retrieved profile are reported in the new L2 diagnostic 'L2RadianceCorrectionFactor' (see Appendix A).

#### 3.6 NIR Calibration

Calibration of MOPITT's NIR channels (e.g., Channel 6) relies on a two-point calibration scheme involving both cold-calibration ("cold-cal") events and hot-calibration ("hot-cal") events. Cold-cals occur many times per day, while hot-cals are performed only about once per year. Ideally, NIR channels are calibrated with gain and offset values determined by interpolating the information from hot-cals occurring both before and after the time of observation. While this method is feasible in retrospective processing mode (i.e., processing previous years of data), it is not possible in forward processing mode (i.e., when processing recently acquired observations). Thus, in forward processing mode, only information from the most recent hot-cal is used to calibrate MOPITT's NIR radiances. Comparisons of NIR-only retrieval products generated in retrospective and forward processing modes have revealed significant differences (10% to 20%) in total column results, with the retrospectively processed data in better agreement with daytime/land TIR-only total column values and time dependence. Therefore, because of the degraded quality of MOPITT products processed in forward processing mode, V7 and V8 products generated in this manner are labeled as "beta" products. These products are eventually reprocessed and replaced by standard archival files following the next hot-cal. Typically, this will occur no more than a year from the time of a particular observation (depending on the date of the most recent hot-cal). The beta products should not be considered for examining longterm records of CO although these products should still be useful for some applications. See Sec 5.



# 4 Product Format and Content

The contents of the V8 Level 2 and Level 3 product files are described and tabulated in Appendices <u>A</u> and <u>B</u>. Beginning with the MOPITT V6 products, the format of the archival Level 1, Level 2 and Level 3 data files switched from HDF-EOS2, based on HDF4 libraries, to HDF-EOS5, based on HDF5 libraries. **V8 products are in the same HDF5 format as V6 and V7 products and should be readable with analysis tools developed for those earlier products.** HDF is a standard format for large datasets (<u>https://www.hdfgroup.org/</u>). The HDF-EOS format is an extension of HDF developed by the HDF-EOS group (<u>http://hdfeos.org/index.php</u>). Files distributed in the HDF-EOS5 format can be accessed with a wide range of software tools including IDL, NCL and MATLAB (<u>https://support.hdfgroup.org/products/</u>).

## 4.1 Level 1 Data

The contents of the Level 1 product files containing the MOPITT calibrated radiances are unchanged for V8.

#### 4.2 Level 2 Data

The contents of the V8 Level 2 product files are described in table form in Appendix <u>A</u>. The reported fields in V7 and V8 Level 2 files are identical, with the exception of the added diagnostic 'L2RadianceCorrectionFactor' for V8. This new diagnostic contains the dynamic radiance bias correction values which are parameterized with respect to time and water vapor for each observation (See Section 3.5).

Appendices C and D provide examples of IDL and NCL code used to open and read the contents of V8

Level 2 data files.

#### 4.3 Level 3 Data

MOPITT Level 3 products are available as gridded daily-mean and monthly-mean files. Data averaging is performed on a one-degree latitude/longitude grid. Compared to Level 2 products, these gridded products typically are less affected by random retrieval errors (e.g., due to instrument noise or geophysical noise) and are packaged into much smaller HDF5 data files. Within each type of Level 3 file, data-averaged products are separately available for daytime and nighttime MOPITT observations. The contents of the V7 L3 files are described in Appendix <u>B</u>; for brevity, only daytime-overpass L3 fields are listed. V8 L3 files include several diagnostics first introduced in the V7 product, including the total column averaging kernel, dry air column, water vapor column, smoothing error covariance matrix and measurement error covariance matrix.

V8 Level 3 processing employs the same strategy for improving information content used for V7. The method relies on both pixel filtering and signal-to-noise ratio (SNR) thresholds for Channel 5 and 6 Average radiances (i.e., 5A and 6A). SNR values for each observation are obtained using radiance and radiance uncertainty values contained in the diagnostic "Level1RadiancesandErrors" in the Level 2 data files. Observations from Pixel 3, one of the four elements of MOPITT's linear detector array, are excluded from TIR-only and TIR/NIR L3 products due to highly variable Channel 7 SNR values. Observations with relatively low SNR tend to yield retrievals weighted heavily by the a priori and generally result in low DFS. Excluding low-SNR observations from the Level 3 cell-averaged values raises overall mean DFS values. Specific filtering rules used for both the daily-mean and monthly-mean V8 Level 3 products are:

- V8 Level 3 TIR-only products exclude all observations from Pixel 3 in addition to observations where the 5A SNR < 1000
- V8 Level 3 NIR-only products exclude all observations where the 6A SNR < 400
- V8 Level 3 *daytime* TIR/NIR products exclude all observations from Pixel 3 in addition to observations where both (1) the 5A SNR < 1000 *and* (2) the 6A SNR < 400

V8 Level 3 *nighttime* TIR/NIR products exclude all observations from Pixel 3 in addition to observations where the 5A SNR < 1000.

# 5 Data Analysis Considerations

#### 5.1 Data Quality

Compared to V7, validation results for V8 CO products indicate reduced long-term bias drift, weaker

bias geographical variability and smaller biases overall. These findings will be documented in an upcoming V8 validation paper.

As described in <u>Section 3.6</u>, MOPITT retrieval products processed without bracketing calibration data (obtained during both previous and subsequent annual calibration events) are considered less reliable than those processed with such data, and are therefore labeled as beta products. V8 beta products are easily identifiable as the filenames of such files include the word "beta" (e.g., "MOP02T-20160501-L2V18.0.1.beta.he5"). At the ASDC ftp and OPeNDAP sites (accessible at <a href="https://eosweb.larc.nasa.gov/datapool">https://eosweb.larc.nasa.gov/datapool</a>), beta files will also be stored in separate directories from archival products. For example, the archival V8 Level 2 TIR-only products will be found in subdirectories under the main directory "MOP02T.008"; this convention is consistent with previous MOPITT releases. Corresponding V8 beta TIR-only products are found in subdirectories under "MOP02T.108". For the initial release of V8 in late 2018, beta products will only be produced and delivered to the data archives for observations made after March, 2018.

Another type of retrieval anomaly has been noticed in a small number of nighttime/land scenes. This anomaly is typically manifested as a striping pattern in retrieved surface-level CO concentrations and surface temperature for one or two pixels in the four-element detector array over a series of tracks. This type of anomaly primarily affects Pixels 1 and 4 and appears to be partly the result of a calibration issue affecting Channel 5 radiances in which gain and offset values exhibit frequent sudden jumps throughout the day. These gain and offset discontinuities have been traced back to cold calibration (space-view) events. The Daily Gain Dev diagnostic (included in both Level 1 and Level 2 files) may be useful for identifying days where this type of anomaly is most likely to occur. However, analyses of "outlier" retrievals suggest that retrieval anomalies due to this effect are typically small (e.g., less than 10 ppbv).

#### 5.2 Data Averaging

Because of both geophysical and instrumental noise, individual MOPITT retrieved profiles are not typically useful for scientific analysis. This is especially true for the NIR-only and TIR/NIR products. Instead, users should employ statistical methods applied to ensembles of retrievals. Simple data averaging is the most common statistical method for reducing the effects of random instrument noise. The tradeoff to this benefit is reduced spatial and/or temporal resolution. When averaging over an ensemble, retrieval uncertainties associated with random radiance errors (such as geophysical noise and instrumental noise) decrease approximately as the square root of the number of retrievals in the ensemble.

The retrieval state vector represents CO volume mixing ratio (VMR) variability as a log-normal quantity. This has important implications for data averaging. For MOPITT data subsets where the main source of retrieval variability is random retrieval noise (rather than CO variability), retrieved

VMR values will follow a log-normal distribution. In such cases, the appropriate method for reducing the effects of instrument noise is to (1) convert individual VMR profiles into log(VMR) profiles, (2) compute the mean, and (3) convert the mean log(VMR) profile back to a VMR profile. Because of the asymmetry of the log-normal distribution, directly computing the mean VMR profile from a set of VMR profiles in such cases will produce a positive bias relative to "truth." In contrast, when CO variability is the dominant source of retrieval variability (such as when averaging over large regions and temporal intervals), directly calculated mean VMR values are most meaningful.

#### 5.3 Inclusion of A Priori

Besides retrieval noise, a variety of effects influence MOPITT data quality. For example, the relative

weight of the a priori profile  $x_a$  in the retrieval  $x_{rtv}$ , which ideally should be as small as possible, is quantified by the retrieval averaging kernel matrix according to

$$x_{rtv} \approx x_a + A (x_{true} - x_a) = A x_{true} + (I - A) x_a$$
(1)

where  $x_{true}$  is the true profile, *A* is the averaging kernel matrix, and *I* is the identity matrix. Inclusion of a priori information is associated with all remote sensing methods based on optimal estimation. The optimal estimation method exploits a priori information to complement the information contained in the observations; the a priori profile plays a strong role for retrieval levels where the measurements are are insensitive. This effect is well understood. An important consequence of this effect is that, when comparing MOPITT retrieved profiles against in-situ data or model results, users must transform these comparison datasets using Eq. 1, so that the comparison data exhibit the same degree of smoothing and a priori dependence as the MOPITT product [1,2]. For the V8 products (like the earlier V5, V6 and V7 products), users must make this transformation in terms of  $log_{10}(VMR)$  rather than VMR. Users should also observe the level-layer associations described in <u>Sec. 3.2</u>.

Other effects have less quantifiable influence on retrieval data quality. Examples of such effects include forward model error, errors in assumed meteorological profiles, and instrumental degradation. For these effects, robust estimates of the associated retrieval errors are not feasible. Quantifying such errors is also complicated because they may be highly variable in space and time.

#### 5.4 Data Filtering

Because of the potential variability of MOPITT data quality, as discussed above, users may decide to exclude particular subsets of the Level 2 data in their analyses. This is a reasonable strategy, *unless such methods could impose retrieval bias*. For example, filtering based on the "Degrees of Freedom for Signal" (DFS) parameter tends to retain high-CO profiles and discard low-CO profiles, thereby imposing a positive retrieval bias on the filtered subset. Filtering on DFS, or other characteristics of

the retrieval averaging kernels, is therefore not recommended.

Alternatively, filters based on geophysical criteria which are known to provide better conditions for remote sensing retrievals may be appropriate. For example, over land, daytime conditions typically provide better thermal contrast conditions for TIR- and TIR/NIR-based retrievals than nighttime conditions.

#### 5.5 Analysis of Retrieved CO Total Column Values

For users interested in quantitatively comparing MOPITT retrieved CO total column values with other datasets (or model output), the V8 Level 2 and Level 3 product files include the total column averaging kernel *a*; this vector quantifies the sensitivity of the retrieved total column to perturbations at each level

of the CO profile. Thus, if  $C_{rtv}$  is the retrieved CO total column, and x is the CO state vector comprised of CO log<sub>10</sub>(VMR) values, the total column averaging kernel element for level *j* in the CO profile is defined by

$$a_j = \partial C_{PTV} / \partial x_j \tag{2}$$

Given a comparison CO profile  $x_{CMP}$  (e.g., either from in-situ measurements or model output), the total column averaging kernel vector is used to simulate MOPITT total column retrievals using the equation

$$C_{sim} = C_a + a(x_{cmp} - x_a) \tag{3}$$

where  $C_a$  is the a priori total column value corresponding to the a priori profile  $x_a$ . Both  $C_a$  and  $x_a$  are also provided in the V8 Level 2 product files for each retrieval.

For V8, the method of calculating *a* has been revised for consistency with Rodgers [10], Section 4.3. Specifically, the total column averaging kernel is now calculated as

$$a^T = h^T A \tag{4}$$

where h is the partial column operator (i.e., the vector of sensitivities of partial column values to  $log_{10}(VMR)$ ). In addition, a bug has been fixed which previously resulted in invalid values of a for retrieved profiles with less than 10 valid levels (i.e., surface pressures less than 900 hPa).

## 6 References

- Deeter, M. N., et al. (2003). Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument, J. Geophys. Res. 108, doi:10.1029/2002JD003186.
- [2] Deeter, M. N., et al. (2010). The MOPITT version 4 CO product: Algorithm enhancements, validation, and long-term stability. J. Geophys. Res. 115, doi:10.1029/2009JD013005.
- [3] Deeter, M. N., et al. (2013). Validation of MOPITT Version 5 Thermal-infrared, near-infrared, and multispectral carbon monoxide profile retrievals for 2000-2011. J. Geophys. Res. Atmos., 118, 6710–6725, doi:10.1002/jgrd.50272.
- [4] Martínez-Alonso, S., et al. (2014). Comparison of upper tropospheric carbon monoxide from MOPITT, ACE-FTS, and HIPPO-QCLS. J. Geophys. Res. 119, 14,144–14,164, doi:10.1002/2014JD022397.
- [5] Deeter, M. N. et al. (2014). The MOPITT Version 6 product: algorithm enhancements and validation. Atmos. Meas. Tech., 7, 3623-3632, doi:10.5194/amt-7-3623-2014.
- [6] Deeter, M. N. et al. (2017). A climate-scale satellite record for carbon monoxide: The MOPITT Version 7 product, Atmos. Meas. Tech., 10, 2533-2555, doi:10.5194/amt-10-2533-2017.
- [7] Mlawer, E. J., et al. (2012). Development and recent evaluation of the MT\_CKD model of continuum absorption, Phil. Trans. Royal Soc. A, 370, 2520–2556, doi:10.1098/rsta.2011.0295.
- [8] Edwards, D. P. (1992). GENLN2: A general line-by-line atmospheric transmittance and radiance model, Technical Report NCAR/TN-367+STR, NCAR, P.O. Box 3000, Boulder, Colorado, 80307-3000, 147 pp.
- [9] see https://modis-atmosphere.gsfc.nasa.gov/sites/default/files/ModAtmo/C6.1\_Calibration\_and\_ Cloud\_Product\_Changes\_UW\_frey\_CCM\_1.pdf
- [10] Rodgers, C. D.: Inverse Methods for Atmospheric Sounding, Theory and Practice, World Scientific, Singapore, 2000.

# Appendices

#### A. Tabulated Contents of V8 Level 2 Product Files

#### DIMENSIONS

| Dimension Name | Definition                                                                                                                                                                       | Size                        |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| nTime          | Number of retrievals                                                                                                                                                             | Varies with<br>each granule |
| nChan          | Number of channels of the instrument                                                                                                                                             | 8                           |
| nTwo           | For data fields which include associated variability (or uncertainty), first element is the parameter and second element is variability/uncertainty, unless otherwise specified. | 2                           |
| nPrs           | Number of fixed pressure levels                                                                                                                                                  | 9                           |
| nPrs2          | Number of pressure levels, including the surface                                                                                                                                 | 10                          |
| nPix           | The number of pixels (i.e., number of detector elements)                                                                                                                         | 4                           |

#### GEOLOCATION FIELDS ('HDFEOS/SWATHS/MOP02/Geolocation Fields/...')

| Field Name                                   | Definition                                                        | Dimension | Units | Data Type |
|----------------------------------------------|-------------------------------------------------------------------|-----------|-------|-----------|
| SecondsinDay                                 | Time of the measurement in seconds from the beginning of the day. | nTime     | S     | F         |
| Latitude                                     | Geolocation of the pixel                                          | nTime     | deg   | F         |
| Longitude                                    | Geolocation of the pixel                                          | nTime     | deg   | F         |
| Pressure                                     | Pressure Levels                                                   | nPrs      | hPa   | F         |
| Pressure2                                    | Pressure Levels including the surface                             | nPrs2     | hPa   | F         |
| Time                                         | TAI Time of the observation                                       | nTime     | S     | F         |
| <b>F</b> = Floating Point <b>I</b> = Integer |                                                                   |           |       |           |

#### **RETRIEVED CO FIELDS ('HDFEOS/SWATHS/MOP02/Data Fields/...')**

| Field Name                    | Definition                                                 | Dimension            | Units               | Data<br>Type |
|-------------------------------|------------------------------------------------------------|----------------------|---------------------|--------------|
| RetrievedCOTotalColumn        | CO Total Column                                            | nTwo, nTime          | mol/cm <sup>2</sup> | F            |
| RetrievedCOMixingRatioProfile | CO Mixing Ratio for the layer<br>above each pressure level | nTwo, nPrs,<br>nTime | ppbv                | F            |
| RetrievedCOSurfaceMixingRatio | CO Mixing Ratio at the<br>surface                          | nTwo, nTime          | ppbv                | F            |

| Field Name                  | Definition                                                                                                                                         | Dimension            | Units               | Data<br>Type |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|--------------|
| APrioriCOMixingRatioProfile | Temporally and geographically<br>variable a priori CO profile<br>based on a climatology for<br>2000-2009 simulated with the<br>CAM-Chem model      | nTwo, nPrs,<br>nTime | ppbv                | F            |
| APrioriCOSurfaceMixingRatio | Temporally and geographically<br>variable a priori surface CO<br>based on a climatology for<br>2000-2009 simulated with the<br>CAM-Chem model      | nTwo, nTime          | ppbv                | F            |
| APrioriCOTotalColumn        | Temporally and geographically<br>variable a priori total column<br>CO based on a climatology for<br>2000-2009 simulated with the<br>CAM-Chem model | nTwo, nTime          | mol/cm <sup>2</sup> | F            |

## A PRIORI FIELDS ('HDFEOS/SWATHS/MOP02/Data Fields/...')

## AVERAGING KERNEL FIELDS ('HDFEOS/SWATHS/MOP02/Data Fields/...')

| Field Name                        | Definition                                                                                                                                                                                                                                                                                                                                           | Dimension           | Data<br>Type |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|
| RetrievalAveragingKernelMatrix    | For each retrieval, a floating point<br>array (10 x 10) containing the<br>matrix describing the sensitivity of<br>the retrieved CO log(VMR) profile<br>to the true CO log(VMR) profile.<br>Dimensions of Retrieval<br>Averaging Kernel Matrix are<br>ordered (nrow, ncolumn, ntime)                                                                  | nPrs2, nPrs2, nTime | F            |
| AveragingKernelRowSums            | This diagnostic provides a single<br>scalar value for each row of the<br>averaging kernel matrix equal to<br>the sum of the elements in that<br>row. Small row-sum values<br>indicate retrieval levels heavily<br>weighted by the a priori while<br>values approaching unity indicate<br>levels with relatively weak<br>sensitivity to the a priori. | nPrs2, nTime        | F            |
| TotalColumnAveragingKernel        | This diagnostic allows users to<br>properly compare MOPITT total<br>column retrievals with total<br>columns derived from in-situ<br>profiles or model simulations.                                                                                                                                                                                   | nPrs2, nTime        | F            |
| TotalColumnAveragingKernelDimless | This diagnostic allows users to<br>properly compare MOPITT total<br>column retrievals with total                                                                                                                                                                                                                                                     | nPrs2, nTime        | F            |

| columns derived from in-situ     |  |
|----------------------------------|--|
| profiles or model simulations    |  |
| based on partial columns instead |  |
| of log(VMR).                     |  |

# CLOUD FIELDS ('HDFEOS/SWATHS/MOP02/Data Fields/...')

These quantities are unitless

| Field Name            | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dimension | Data<br>Type |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| CloudDescription      | 0 = clear, only MOPITT thermal and cloudtop used<br>1 = clear, only MOPITT thermal used<br>2 = MOPITT and MODIS cloud mask agree on clear<br>3 = MODIS cloud mask only clear (when MOPITT<br>determines cloudy)<br>4 = MOPITT overriding MODIS cloud mask over low<br>clouds (MODIS test flags used)<br>5 = MODIS cloud mask only, clear over polar<br>regions and daytime<br>6 = Nighttime ocean scenes where the MODIS cloud<br>mask-based test finds that the area was cloudy but<br>MOPITT's thermal-channel radiances finds that the<br>area was clear (new for V7)                                      | nTime     | I            |
| MODISCloudDiagnostics | <ul> <li>(1) Number of "determined" MODIS pixels</li> <li>(2) Percentage of cloudy MODIS pixels</li> <li>(3) Percentage of clear MODIS pixels</li> <li>(4) Average value of "sun glint" MODIS flag</li> <li>(5) Average value of "snow/ice background" MODIS flag</li> <li>(6) Average value of "non-cloud obstruction" MODIS flag</li> <li>(7) Average value of "IR threshold test" MODIS flag</li> <li>(8) Average value of "IR temperature difference tests" MODIS flag</li> <li>(9) Average value of "visible reflectance test" MODIS flag</li> <li>(10) Fraction of "determined" MODIS pixels</li> </ul> | 10, nTime | F            |

| Field Name                  | Definition                                              | Dimension   | Units | Data<br>Type |
|-----------------------------|---------------------------------------------------------|-------------|-------|--------------|
| APrioriSurfaceEmissivity    | A priori surface emissivity<br>from static map          | nTwo, nTime |       | F            |
| APrioriSurfaceTemperature   | A priori surface<br>temperature from<br>MERRA2 analysis | nTwo, nTime | К     | F            |
| DEMAltitude                 | Digital Elevation Model surface height                  | nTime       | m     | F            |
| SurfaceIndex                | 0 = water<br>1 = land<br>2 = mixed (coastline)          | nTime       |       | I            |
| SurfacePressure             | Surface pressure from<br>MERRA2 analysis                | nTime       | hPa   | F            |
| RetrievedSurfaceEmissivity  | Surface emissivity from the retrieval                   | nTwo, nTime |       | F            |
| RetrievedSurfaceTemperature | Surface temperature from the retrieval                  | nTwo, nTime | к     | F            |

## SURFACE PROPERTY FIELDS ('HDFEOS/SWATHS/MOP02/Data Fields/...')

## RADIANCE FIELDS ('HDFEOS/SWATHS/MOP02/Data Fields/...')

| Field Name                 | Definition                                                                                                                                                                                                                         | Dimension            | Units  | Data<br>Type |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------|--------------|
| DailyGainDev               | This diagnostic provides the<br>standard deviation of the gain<br>values used to calibrate the<br>radiances for a particular channel<br>and pixel on one day. In this<br>case, nTwo is the Average and<br>Difference signal gains. | nTwo, nChan,<br>nPix |        | F            |
| Level1RadiancesandErrors   | First dimension corresponds to<br>radiances/uncertainties; second<br>dimension corresponds to<br>channel (in sequence 7A, 3A, 1A,<br>5A, 7D, 3D, 1D, 5D, 2A, 6A, 2D,<br>6D).                                                       | nTwo, 12,<br>nTime   | W/m²Sr | F            |
| L2RadianceCorrectionFactor | Time- and water vapor-<br>dependent radiance correction<br>factors ('RADFIX') applied to<br>each radiance (same sequence<br>as Level1RadiancesandErrors).                                                                          | 12, nTime            |        | F            |

# **RETRIEVAL DIAGNOSTICS ('HDFEOS/SWATHS/MOP02/Data Fields/...')**

These quantities are unitless

| Field Name                        | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dimension              | Data<br>Type |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|
| DegreesofFreedomforSignal         | For each retrieval, a floating<br>point value describing the<br>number of pieces of independent<br>information in the retrieval, equal<br>to the trace of the averaging<br>kernel matrix.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nTime                  | F            |
| MeasurementErrorCovarianceMatrix  | Measurement error represents<br>the retrieval log(VMR)<br>uncertainty due to uncertainties<br>in the measured radiances<br>(including instrumental and<br>geophysical 'noise').                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nPrs2, nPrs2,<br>nTime | F            |
| RetrievalAnomalyDiagnostic        | These flags are set to true when<br>particular anomalous conditions<br>are observed, suggesting that<br>the retrievals should either be<br>ignored or used cautiously. The<br>first four flags (i.e., elements 1-4<br>of the Retrieval Anomaly<br>Diagnostic array) are set to true<br>(i.e., a value of 1) when one of<br>the thermal channel weighting<br>functions exhibits a sign change<br>vertically. Elements 1-4<br>correspond respectively to the<br>5A, 5D, 7A, and 7D weighing<br>functions. The fifth flag of the<br>Retrieval Anomaly Diagnostic<br>array is set to true when the<br>retrieval averaging kernel matrix<br>includes at least one negative<br>element on the matrix diagonal. | 5,nTime                | I            |
| RetrievalErrorCovarianceMatrix    | For each retrieval, a floating<br>point array (10 x 10) containing<br>the a posteriori covariance matrix<br>in base-10 log(VMR).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nPrs2, nPrs2,<br>nTime | F            |
| Retrievallterations               | The number of retrieval algorithm<br>iterations needed for<br>convergence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nTime                  | I            |
| SignalChi2                        | A measure of the retrieval's goodness of fit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nTime                  | F            |
| SmoothingErrorCovarianceMatrix    | Smoothing error represents the<br>retrieval log(VMR) uncertainty<br>due to the influence of the a<br>priori and weighting functions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nPrs2, nPrs2,<br>nTime | F            |
| RetrievedCOTotalColumnDiagnostics | This two-element vector contains<br>both the estimated smoothing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nTwo, nTime            | F            |

| error and measurement error<br>contributions (in that order) to the<br>total retrieval error for CO total<br>column. Smoothing error<br>represents the uncertainty in the<br>retrieved total column due to to<br>the influence of the a priori and<br>weighting functions.<br>Measurement error describes the<br>uncertainty due to random errors<br>in the measured radiances. |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

# ATMOSPHERIC AND OBSERVATIONAL FIELDS ('HDFEOS/SWATHS/MOP02/Data Fields/ ...')

| Field Name                                                                                                                                                       | Definition                                                                                                                                                                                                                                                       | Dimension | Units               | Data<br>Type |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|--------------|
| PressureGrid                                                                                                                                                     | Fixed pressure levels (i.e.,           PressureGrid         900, 800, 700, 600, 500, 400,           300, 200 and 100 hPa)         300, 200 and 100 hPa                                                                                                           |           | hPa                 | F            |
| SolarZenithAngle                                                                                                                                                 | Solar zenith angle                                                                                                                                                                                                                                               | nTime     | deg                 | F            |
| SatelliteZenithAngle                                                                                                                                             | Viewing angle of the satellite                                                                                                                                                                                                                                   | nTime     | deg                 | F            |
| SwathIndex                                                                                                                                                       | For each retrieval, a three-<br>element integer vector<br>containing the unique 'pixel'<br>(varies from 1 to 4), 'stare'<br>(varies from 1 to 29), and<br>'track' indices. 29 stares<br>(equivalent to the mirror<br>pivoting out and back) define<br>one track. | 3, nTime  |                     | I            |
| DryAirColumn                                                                                                                                                     | Dry-air atmospheric column to<br>facilitate the computation of<br>the equivalent mixing ratio of<br>CO averaged over the<br>atmospheric column                                                                                                                   | nTime     | mol/cm <sup>2</sup> | F            |
| WaterVaporColumnMoist-air atmospheric column<br>to facilitate the computation of<br>the equivalent mixing ratio of<br>CO averaged over the<br>atmospheric column |                                                                                                                                                                                                                                                                  | nTime     | mol/cm <sup>2</sup> | F            |

NOTES: Fill Values are -9999

#### B. Tabulated Contents of V8 Level 3 Product Files

All fields listed below reside in HDF5 directory 'HDFEOS/GRIDS/MOP03/Data Fields/...'. Find data field descriptions in Appendix A. Field names of nighttime-overpass L3 products, e.g.,

#### MOPITT Version 8 Product User's Guide

RetrievedCOMixingRatioProfileNight, are also included in L3 files but are not shown in tables below. All L3 fields are floating point, except for integer-valued fields SurfaceIndexDay, SurfaceIndexNight, NumberofPixelsDay and NumberofPixelsNight. L3 files also contain mean uncertainty and variability (i.e., standard deviation) statistics for fields in table marked with dagger symbol (<sup>†</sup>). For example, mean uncertainty and variability statistics for RetrievedCOMixingRatioProfileDay are included in L3 files as RetrievedCOMixingRatioProfileMeanUncertaintyDay and RetrievedCOMixingRatioProfileVariabilityDay .

#### **GEOLOCATION FIELDS**

| Field Name                                | Definition                     | Dimension | Units |
|-------------------------------------------|--------------------------------|-----------|-------|
| Latitude                                  | Latitudes of grid cell centers | 180       | deg   |
| Longitude Longitudes of grid cell centers |                                | 360       | deg   |
| Pressure                                  | Fixed pressure grid            | 9         | hPa   |

#### **RETRIEVED CO FIELDS**

| Field Name                                    | Dimension   | Units               |
|-----------------------------------------------|-------------|---------------------|
| RetrievedCOMixingRatioProfileDay <sup>†</sup> | 9, 180, 360 | ppbv                |
| RetrievedCOSurfaceMixingRatioDay <sup>†</sup> | 180, 360    | ppbv                |
| RetrievedCOTotalColumnDay <sup>†</sup>        | 180, 360    | mol/cm <sup>2</sup> |

#### **A PRIORI FIELDS**

| Field Name                     | Dimension   | Units               |
|--------------------------------|-------------|---------------------|
| APrioriCOMixingRatioProfileDay | 9, 180, 360 | ppbv                |
| APrioriCOSurfaceMixingRatioDay | 180, 360    | ppbv                |
| APrioriCOTotalColumnDay        | 180, 360    | mol/cm <sup>2</sup> |

#### AVERAGING KERNEL FIELDS

| Field Name                        | Dimension        |
|-----------------------------------|------------------|
| RetrievalAveragingKernelMatrixDay | 10, 10, 180, 360 |
| TotalColumnAveragingKernelDay     | 10, 180, 360     |

#### SURFACE PROPERTY FIELDS

| Field Name                                  | Dimension | Units |
|---------------------------------------------|-----------|-------|
| RetrievedSurfaceTemperatureDay <sup>†</sup> | 180, 360  | К     |

#### MOPITT Version 8 Product User's Guide

| RetrievedSurfaceEmissivityDay <sup>†</sup> | 180, 360 |     |
|--------------------------------------------|----------|-----|
| APrioriSurfaceTemperatureDay               | 180, 360 | К   |
| APrioriSurfaceEmissivityDay                | 180, 360 |     |
| DEMAltitudeDay                             | 180, 360 | m   |
| SurfaceIndexDay (integer-valued)           | 180, 360 |     |
| SurfacePressureDay                         | 180, 360 | hPa |

#### **RETRIEVAL DIAGNOSTICS**

| Field Name                           | Dimension        |
|--------------------------------------|------------------|
| NumberofPixelsDay (integer-valued)   | 180, 360         |
| DegreesofFreedomforSignalDay         | 180, 360         |
| RetrievalErrorCovarianceMatrixDay    | 10, 10, 180, 360 |
| MeasurementErrorCovarianceMatrixDay  | 10, 10, 180, 360 |
| SmoothingErrorCovarianceMatrixDay    | 10, 10, 180, 360 |
| RetrievedCOTotalColumnDiagnosticsDay | 180, 360         |
| SignalChi2Day                        | 180, 360         |

## ATMOSPHERIC AND OBSERVATIONAL FIELDS

| Field Name              | Dimension | Units               |
|-------------------------|-----------|---------------------|
| SolarZenithAngleDay     | 180, 360  | deg                 |
| SatelliteZenithAngleDay | 180, 360  | deg                 |
| DryAirColumnDay         | 180, 360  | mol/cm <sup>2</sup> |
| WaterVaporColumnDay     | 180, 360  | mol/cm <sup>2</sup> |

NOTES: Fill Values are -9999.

#### C. Sample IDL Code for Opening and Reading V8 Level 2 files

pro example\_v8\_lev2

; sample IDL code for opening and reading MOPITT Version 8 Level 2 files

; note different paths for 'Geolocation Fields' and 'Data Fields'

infile = 'MOP02T-20030101-L2V18.0.1.he5'

print, infile

print, 'open hdf5 file' file id = H5F OPEN(infile)

; read latitudes into variable 'moplat' print, 'read latitudes' dataset\_id = H5D\_OPEN(file\_id, '/HDFEOS/SWATHS/MOP02/Geolocation Fields/Latitude') moplat = H5D\_Read(dataset\_id) H5D\_CLOSE, dataset\_id

; read longitudes into variable 'moplon' print, 'read longitudes' dataset\_id = H5D\_OPEN(file\_id, '/HDFEOS/SWATHS/MOP02/Geolocation Fields/Longitude') moplon = H5D\_Read(dataset\_id) H5D\_CLOSE, dataset\_id

; read retrieved profiles into variable 'rtvprofl' print, 'read retrieved CO profiles' dataset\_id = H5D\_OPEN(file\_id, '/HDFEOS/SWATHS/MOP02/Data Fields/RetrievedCOMixingRatioProfile') rtvprofl = H5D\_Read(dataset\_id) H5D\_CLOSE, dataset\_id

; read averaging kernel matrices into variable 'avkrn' print, 'read AK matrix' dataset\_id = H5D\_OPEN(file\_id, '/HDFEOS/SWATHS/MOP02/Data Fields/RetrievalAveragingKernelMatrix') avkrn = H5D\_Read(dataset\_id) H5D\_CLOSE, dataset\_id

H5F\_CLOSE, file\_id

; print lat and lon of first retrieval print, moplat(0), moplon(0) ; print retrieved profile of first retrieval (fixed-levels only, surface retrieval missing) print, rtvprofl(0,0:8,0) ; print AK matrix for first retrieval print, avkrn(0:9,0:9,0)

return end

#### D. Sample NCL Code for Opening and Reading V8 Level 2 files

```
example-mopitt-v8-lev2.ncl
_____
Concepts illustrated:
 - For use with MOPITT CO version 8, level 2 product
 - Loading CO data, AK, latitude and longitude from
  MOPITT level 2 hdf5 file
; To run type:
  ncl example-mopitt-v8-lev2.ncl
begin
; MOPITT file location
indir = "/MOPITT/V8T/Archive/L2/200301/0101/"
fname = "MOP02T-20030101-L2V18.0.1.he5"
infile = indir+fname
print(infile)
   _____
; load file and extract data structures
       _____
; names of data structures
 ; determined from an ncl_filedump
print("load hdf5 file")
fin = addfile(infile, "r")
 ; extract longitude
          = fin->$"Longitude MOP02"$
 moplon
 ; extract latitude
 moplat = fin->$"Latitude_MOP02"$
 ; extract profile
 ret profile = fin->$"RetrievedCOMixingRatioProfile MOP02"$
 ; extract averaging kernel
         = fin->$"RetrievalAveragingKernelMatrix_MOP02"$
 avkrn
print data structure information
:-----
 ; Determine dimensions of data structures
printVarSummary(moplon)
printVarSummary(moplat)
printVarSummary(ret_profile)
printVarSummary(avkrn)
```

; print lat, lon of first retrieval print("Latitude: "+ moplat(0)+", Longitude: "+moplon(0)) ; print first retrieved profile on fixed levels - surface retrieval is in a separate data structure print(ret\_profile(0,:,0)) ; print AK matrix for first retrieval print(avkrn(0,:,:))

end