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Outline

*  Why in situ ozone sonde measurements and current challenge
* Basics of ozone sonde measurements
* Ozone sonde time response

e Effect on atmospheric measurements and UTLS
* Next steps
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ECC ozone sonde sites in WOUDC

Networks:
GAW
NDACC
SHADOZ
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Global ozonesonde network
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e Ozone sondes are launched 2/month — 3/week or
seasonally (at poles) at ~60 sites.

Ozone Measuring Satellites
ALTIUS

* Since 2000, sonde network has supported > 20 satellite e
ozone instruments (ASOPOS 2.0, Report, 2020). They i st | eossionry isions
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* Unique role for sondes: detect drift in ozone-profiling Met0p A B,C GOME.2/IAS
satellites, some lasting > 10 yrs Aura OMIMLS
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* Since 2015, satellite & trends assessment communities B TONS | emsiom— !
demand 5% or better accuracy and precision of sonde NON{1 SBUVI2 s !
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Challenge: Sondes from two manufacturers & 3 “sensing solution” (SST) types are used.

Sondes with varying instrument-SST combinations launched together in field or in a
simulation chamber give systematically varying O; readings in various profile segments
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ASOPOS

* Assessment of Standard Operating Procedures for Ozone Sondes

* |International committee to assess the performance of current ozone
sondes and to define the official WMO/GAW recommendations for station
operators and software providers

* Publications coming out of the ASOPQOS activity
Smit, H. & A. M. Thompson, Editors, ASOPOS 2.0 Report, in revision
Stauffer, R. M. et al., GRL, doi: 10.1029/2019/GL086791, 2020
Tarasick, D. W. et al., Earth Space Sci., doi: 10.1002/2019EA000914
Vomel, H., et al., AMT, https://doi.org/10.5194/amt-13-5667-2020

NCAR
UCAR



Homogenization: MLS and OMI comparison: SHADOZ Costa Rica
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| See also: Stauffer, R. M., et al. ( 2020): Geophysical Research Letters, 47, e2019GL086791. doi:10.1029/2019GL086791
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MLS and OMI comparison: SHADOZ Costa Rica
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| See also: Stauffer, R. M., et al. ( 2020): Geophysical Research Letters, 47, e2019GL086791. doi:10.1029/2019GL086791
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How does an ozone sonde work?




Electrochemical Concentration Cell (ECC) Ozone Sonde
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From: Komhyr, W. D. and T. B. Harris (1971): Development of an ECC ozonesonde,
NOAA Technical Report ERL 200-APCL 18, Boulder, CO, Feb 1971.




Basic chemistry

Cathode: Potassium iodide reaction
2KI + O3 + H,0 - 2KOH + 1, + O,

Cathode reduction
[, +2e™ - 21™

Anode: Triiodide reactions (anode, high concentration of Kl):
L+IT 2135

Anode oxidation
37 - I3 + 2e”

Additional reactions involving the phosphate buffer are not well understood
Processes at ion bridge and electrodes are not well understood
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ECC equation

t100 Mt
I = Measured cell current
n; = Total efficiency
Ly = “Background current”

Nt = Npump * Nsolution * Nmanufacturer * Nvolume

Mpump = pump efficiency

Nsolution = stoichiometric efficiency of solution and cell
Nmanufacturer = Manufacturer efficiency

Nvolume = absorption efficiency
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Challenges

* Empirical efficiency correction combines different physical effects of the cell
and the pump and has been empirically tuned to sensing solution type and
manufacturer

* “Background current” is measured prior to launch, but shows large variations

* Sensing Solution Types:
SST1.0 (1% KiI, full buffer):  used in sondes from SPC
SSTO.5 (0.5% Kl, 1/2 buffer): used in sondes from EnSci
SSTO0.1 (1% Kl, 1/10t buffer): used in sondes from EnSci

e Other solutions and other combinations of manufacturer and solution have
been used in the past
- large homogenization effort by ozone sonde community over the past 10
years
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Efficiencies
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Background currents from 2334 soundings
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Background current during sonde preparation
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Vomel, H and K. Diaz (2010), Atmos. Meas. Tech., 3, 495-505, doi:10.5194/amt-3-495-2010.
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“Background current”

1. The cell current using ozone free air continues to decrease
— Concept of constant background is invalid
- Two different superimposed decay time constants
fast =20s
slow = 25 min

Current [uA]
°

Time [min]

2. The two sensing solutions give different readings in the slow path
- there is additional chemistry happening involving the phosphate buffer
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Time response corrections




Time response correction

I () = I () + (1)

I T A slow reaction (z,~25 min, contributes < 10%)

fast reaction (z,=20s, contributes > 90%)
measured cell current

* This equation can be iteratively solved.

* Fast reaction is the reaction of ozone and iodide. Its steady state is used in the ECC equation.

+ Time dependent slow reaction replaces the “background current”

« Separation of stoichiometry from the empirical efficiencies, which are reduced to mostly the pump
efficiency

3 — 7 If,ss
2F O¢ , Nt

L Calculated steady state of the fast reaction

Po

Vomel, H., et al (2020): Atmos. Meas. Tech., 13, 5667-5680, https://doi.org/10.5194/amt-13-5667-2020
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Time response correction

Input parameters for the algorithm:
* Fast time constant -> Measured at some stations, ~ 20 s
* Slow time constant -> Not measured, assume 25 min

 Steady state solution efficiency -> Depends on the sensing solution
(stoichiometry)

Algorithm :

* Calculates slow reaction contribution, which replaces the constant “background”.
Better captures the contribution of the buffers in the different sensing solutions

* Uses same pump efficiency correction for all sondes/solutions, i.e. clear
separation between action of pump and chemistry in the cell.

* Observed difference between the different sonde manufacturers is not captured.
This needs more work.

NCAR
UCAR



Lab experiment at surface pressure
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Julich Ozone Sonde Intercomparison Experiment (JOSIE 2017)
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Julich Ozone Sonde Intercomparison Experiment

Average of 77 simulation experiments in the Julich Environmental Chamber, 2017
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Effect of time response on individual ozone profile




Effect of slow reaction contribution
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Effect of fast reaction:
Enhancement and downward shift of vertical features
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Sharper gradient near the surface
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Effect of time response on profiles from SHADOZ




Sensing Solution Type (SST) dependent steady state efficiency

SST1.0 (1% KI, full buffer):  1.11 (2334 profiles)
SSTO.5 (0.5% Kl, 1/2 buffer): 1.07 (1036 profiles)
SSTO0.1 (1% KI, 1/10% buffer): 1.02 (1893 profiles)

Need to be better determined based on laboratory
measurements

Constant manufacturer difference of about 4% based on dual
sonde launches
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Average time response correction at Costa Rica (SST0.1)
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Average time response correction for 1% full buffer (SST1.0) solution
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Average time response correction for different sensing solutions
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Average time response correction, Tropopause relative
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Changes at the tropopause
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Importance for low ozone in UTLS

Observations of Near-Zero Ozone
Concentrations Over the Convective Pacific:
Effects on Air Chemistry

D. Kley,” P. J. Crutzen, H. G. J. Smit, H. Vémel, S. J. Oltmans,
H. Grassl, V. Ramanathan

A series of measurements over the equatorial Pacific in March 1993 showed that the
volume mixing ratios of ozone were frequently well below 10 nanomoles per mole both
in the marine boundary layer (MBL) and between 10 kilometers and the tropopause.
These latter unexpected results emphasize the enormous variability of tropical tropo-
spheric ozone and hydroxyl concentrations, which determine the oxidizing efficiency of
the troposphere. They also imply a convective short circuit of marine gaseous emissions,
such as dimethyl sulfide, between the MBL and the uppermost troposphere, leading, for

instance, to sulfate particle formation.

Because of the reactions
QO +hv(A<320nm) — O('D) + O, (R1)
O('D) + H,0 — 20H (R2)

where h is Planck’s constant, v is frequency,
and A is wavelength, ozone (O;) is the
precursor molecule for hydroxyl (OH) rad-
icals (1), the atmosphere’s main oxidizing
agent. The small fraction of atmospheric O,
that is located in the troposphere thus plays
a large role in the chemical composition of
the atmosphere. In the stratosphere, pho-
tolysis of molecular oxygen (O,) forms Oy,
of which a fraction is transported mostly to

SCIENCE e« VOL. 274 =

11 OCTOBER 1996

the extratropical troposphere (2).
In the troposphere, reactions R1 + R2,
and, in addition, reactions

CO+OH—H+CO, (R3)
H+O0,+M—HO,+M (R4)
HO, + O; = OH + 20, (R5)

net: Ofza) CO — CO, + O,

are responsible for Oy destruction (3). In
the oceanic atmosphere, emissions of nitric
oxide (NO) from the surface and lightning
are small. With measured NO volume mix-




Effect of time response correction on CEPEX data
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Lessons learnt (1)

* Time response of ECC ozone sonde is important in UTLS

* Time response correction allows separating processes in ECC

pump efficiency

slow reaction takes on role of “background”

stoichiometry in processing is reduced to stoichiometry coefficient
manufacturer difference not well characterized

e Structure of the profiles changes slightly depending on solution recipe

* In UTLS, ozone gradients generally become stronger

* At the tropopause, mean increases up to 15%, individual increases up to
90% are possible, depending on profile gradient

* Extremely low values such as those reported during CEPEX are most likely
an artifact of not considering the time response under extreme conditions

* With time response correction ECCs may achieve 5% uncertainty level in
profile
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Lessons learnt (2)

« Ozone sondes are the prime reference for in situ ozone
measurements in the troposphere and stratosphere

« The ASOPOS process improves the overall network performance

« Homogenization effort allows identifying small bias issues across
the network




How about ECC shift (drop off) in 2016?

* Shift in time series not yet explained

* Very careful review of operating procedures at Costa Rica showed nothing
suspicious, other stations show the offset as well: Not operator related

* Shift at some stations 3% to 5% —> Within limits, but barely.

* Source of time series change
— Pump is most likely not the issue
— Change originates in the cell

— Change depends on strength of buffer, i.e. poorly understood side reactions
are involved in the change

— Manufacturer is not aware of change
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Next steps

* Need to implement time response correction in operational processing

* Need to identify the root cause of the small ECC shift for some stations starting
in around 2014

* Dependence of the network on the manufacturers must be addressed
- Need better quantitative understanding of the side reactions in the ECCs
- Need manufacturer independent ground check prior to launch of sonde
- Need regular intercomparison experiments to evaluate sonde performance
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