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Outline of Legras and Bucci (2020)

* Recaps prior findings of transport mechanisms for BL air to enter the
monsoon stratosphere

* Runs forward and backward trajectories from and to observed
convective clouds
* Examines distributions of impact and source regions
 Examines age of parcels as they vertically disperse

* Develops a 1-D model to characterize monsoon confinement for
comparison with trajectory findings

* Summarizes results in context of prior findings / mechanisms



Findings | will cover from Legras and Bucci

Question 1: How does convectively lofted air enter the stratosphere?

* Air masses lofted by convection spread horizontally and undergo slow
radiative ascent, in accordance with the “blower” mechanism

Question 2: What are the source regions of air entering the stratosphere?

* Transport of convective air masses that cross the monsoon tropopause
are primarily of continental origin, especially favoring Plateau origin

Question 3: How do different reanalyses represent these processes?

 ERA-I and ERAS are qualitatively similar and correlate well, but are
guantitatively different



The Asian Monsoon Anticyclone (AMA) is associated
with a UTLS enhancement of tropospheric compounds

Satellite Observations Numerical Models
Seasonal Structure Daily Variability
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Question 1: How does convectively lofted air
enter the stratosphere?
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Does convectively detrained air continue vertical ascent (“chimney”),
or does it spread horizontally as it ascends (“blower”)?



Question 1: How does convectively lofted air
enter the stratosphere?
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egras and Bucci (2020) approach this debate
using a series of trajectories

* A suite of 60-day forward trajectories are run from the locations of
satellite-observed cloud tops

* Launches limited to above 250 hPa, within the ASM region, and JJIA 2017

* Also runs backward trajectories from selected theta surfaces at 1°
resolution every 15 minutes until they reach observed cloud tops

 ERA-lI and ERAS are configured for use in diabatic and kinematic
format (emphasis on ERAS diabatic runs)
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Trajectories ascend and descend
from their high-cloud sources, with
descent being more intense

Diabatic trajectories (right) show a
sharp separation between ascending
and descending branches, brought
about by the presence of an LZRH



EAD-Box-theta-FullAMA target 360 K SH
target 360 K

equal conv impact density

Air masses retain a columnar structure as they rise,
indicating a spiraling ascent (Vogel et al 2019)

EAD-Box-theta-Full AMA target 370 K SH : equal conv impact density
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EAD-Box-theta-FullAMA target 360 K SH : equal conv impact density

i ﬂ? Air masses retain a columnar structure as they rise,
indicating a spiraling ascent (Vogel et al 2019)
D? Distribution of air mass age reveals constant renewal at
360K from beneath convection
U? **These support the “blower” hypothesis (Pan et al 2016)
Dib (e) EAD-Box-theta-Ful AMA mean age target 360 K SH (day)
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Question 2: What are the source regions for
air parcels which reach the stratosphere?
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Bergman et al (2013)
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EAD-Box-theta-FullAMA target 340 K SH : equal conv impact density

Air hitting 350K
and below is part
of sinking branches
of Hadley-Walker
circulation

EAD-Box-theta-FullAMA source of 340 K SH : equal conv source density
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At 360K and above,
convective clouds
deposit air masses
into the confines of

the ASMA

EAD-Box-theta-FullAMA target 340 K SH : equal conv impact density
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EAD-Box-theta-FullAMA source of 340 K SH : equal conv source density

30°E
EAD-Box-theta-Ful

These air masses are
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continental origin
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EAD-Box-theta-FullAMA target 380 K SH : equal conv impact density

target 380 K
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At 380K and above,
convective impact
retains a column
shape which suggests
a spiraling ascent
(Vogel et al 2019)

The source regions are
virtually identical and
are consistent with the
location of the “conduit”
(Bergman et al 2013)




Asia Land Ocean  Tibetan Plateau
All-sky LZRH EAD 357.9K  361.0K 356.7K 365.2K
EID 3529K 357.6K 351.0K 366.7K
Crossover Level above which parcels EAD 3639K 3644K 362.5K 364.2K
preferentially ascend EID 361.7K  361.8K 358.5K 363.1K
High-cloud NWCSAF retrieval Proportion 100%  26.6%  68.4% 5.0 %
Maximum high-cloud level 349.5K 355.5K 3495K 359.5K
Mean high-cloud level 3529K 3564K 351.1K 359.0K
High-cloud fraction above crossover EAD 2.6 % 5.1% 1.7 % 10.8 %
EID 5.1% 10.4 % 4.1 % 16.7 %
Impact at 380 K and above EAD FullAMA 100%  54.8%  22.8% 22.4 %
EID FullAMA 100%  54.4%  32.0% 13.6 %

Asia mask

The crossover is slightly higher than the LZRH, except over the Plateau ::: '
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Convection is higher over land than ocean, and higher still over the Plateau "
18° N\
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The impact at 380 K thus favors continental sources

Figure 11. Mask of the three defined regions that part}téon Asia.



Expanding to a global domain enhances the
contribution from maritime sources

(a)

(b) EID-FULL-Box-theta-Full AMA source of 380 K SH : conv source density (d? K1)

EID-FULL-Box-theta-FullAMA target 380 K SH : conv impact density (d? K1)
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Question 3: How do the ERA-I and ERAS
reanalyses represent these processes?
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There is general qualitative agreement
between the impact and source regions

(a)

EID-FULL-Box-theta-FullAMA target 380 K SH : conv impact density (42 K—1)
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There are some noteworthy differences on the southern

Plateau slope and over the West Pacific .



ERA-I and ERAS correlate well but have some
guantitative differences in impact

Correlations and ratios
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3-D Trajectory Model

1-D Model

A 1-D confinement model produces adequate
representation of ASM behavior
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The equation considers:

- Diffusion
- Attenuation at the boundaries

- The vertical distribution of sources

(the exponential decay of cloud tops with altitude)

The 1-D model is representative
of the confinement of parcels
within the anticyclone!

(0)
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Findings | will cover from Legras and Bucci

Question 1: How does convectively lofted air enter the stratosphere?

* Air masses lofted by convection spread horizontally and undergo slow
radiative ascent, in accordance with the “blower” mechanism

Question 2: What are the source regions of air entering the stratosphere?

* Transport of convective air masses that cross the monsoon tropopause
are primarily of continental origin, especially favoring Plateau origin

Question 3: How do different reanalyses represent these processes?

* ERA-I and ERAS are qualitatively similar but quantitatively differ. ERAS5 is
more consistent between kinematic and diabatic trajectories than ERA-I
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Percentage of convective hits from EAD 360 K Jul-Aug—Sep 2017

target 360 K
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