Aircraft-Based Observations of Ozone-Depleting Substances in the Upper Troposphere and Lower Stratosphere in and Above the Asian Summer Monsoon

Karina E. Adcock, Paul J. Fraser, Brad D. Hall, Ray L. Langenfelds, Geoffrey Lee, Stephen A.Montzka, David E. Oram, Thomas Röckmann, Fred Stroh, William T. Sturges, Bärbel Vogel, and Johannes C. Laube

This is an open access article under the terms of the Creative Commons Attribution License. which permits use, distribution and reproduction in any medium, provided th

References

Volume 126, Issue 1 16 January 2021 e2020JD033137

Related Informatio

Recent studies show that the Asian summer monsoon anticyclone (ASMA) transports emissions from the rapidly industrializing nations in Asia into the tropical upper troposphere. Here, we present a unique set of measurements on over 100 air samples

Paper Road Map

- Brief Background Information on VSLS and StratoClim
- StratoClim Long-Lived ODS
- StratoClim Short-Lived ODS
- Model Back-Trajectory Analysis
- Equivalent Chlorine (ECl)
- Equivalent Effective Stratospheric Chlorine (EESC)
- Wrap-up

Main Conclusions from Adcock et al. (2020)

Highlights the importance of the ASM as a fast transport mechanism in an important ODS region and the importance of Cl-VSLS in the northern extratropical lower stratosphere

- First set of in situ data for many ODS in lower stratosphere over ASM
- CI-VSLS in ASM region higher than reported in 2018 WMO report. VSLS increase EESC estimate by 8-26% in NH extratropical lower stratosphere.
- The ECI and EESC for long-lived species is also higher than reported global averages recently.
 - The large emission sources and amount of input to the stratosphere during ASM are the reason

CHAPTER 1

UPDATE ON OZONE-DEPLETING SUBSTANCES (ODSs) AND OTHER GASES OF INTEREST TO THE MONTREAL PROTOCOL

Lead Authors A. Engel M. Rigby Coauthors J.B. Burkholder R.P. Fernandez L. Froidevaux B.D. Hall R. Hossaini T. Saito M.K. Vollmer B. Yao Contributors E. Altas P. Bernath D.R. Blake G. Dutton P. Krummel J.C. Laube E. Mahieu S.A. Montzka J. Mühle G. Nedoluha S.J. O'Doherty D.E. Oram K. Pfeilsticker R.G. Prinn B. Quack I.J. Simpson R.F. Weiss **Review Editors** Q. Liang S. Reimann

Very Short-Lived Substances (VSLS): Who Cares?

- Atmospheric lifetime less than 6 months and are not regulated by the Montreal Protocol
- ASM anticyclone is an efficient pathway to move air rapidly into the stratosphere – VSLS can reach stratosphere despite their short lifetime.
- CI-VSLS emissions are on the rise, still a small portion of ODS but they are gaining attention

@AGUPUBLICATIONS

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE 10.1002/2013JD021396

Key Points:

 CARIBIC observations show overview of tropospheric distributions of CH₃CI Biomass burning/noncombustion sources contribute to the CH₃CI distributions
 CH₃CI emitted in South Asia shows a unique biofuel signal Methyl chloride in the upper troposphere observed by the CARIBIC passenger aircraft observatory: Large-scale distributions and Asian summer monsoon outflow

T. Umezawa¹, A. K. Baker¹, D. Oram², C. Sauvage¹, D. O'Sullivan^{2,3}, A. Rauthe-Schöch¹, S. A. Montzka⁴, A. Zahn⁵, and C. A. M. Brenninkmeijer¹

¹Max Planck Institute for Chemistry, Mainz, Germany, ²National Centre for Atmospheric Science, Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, LIK, ³Now at Met Office, Even

IVIONTReal Protocol

Atmos. Chem. Phys., 15, 1939–1958, 2015 www.atmos-chem-phys.net/15/1939/2015/ doi:10.5194/acp-15-1939-2015 © Author(s) 2015. CC Attribution 3.0 License.

nces (VSLS): Who Cares?

nonths and are not regulated by the

Increasing concentrations of dichloromethane, CH₂Cl₂, inferred from CARIBIC air samples collected 1998–2012

E. C. Leedham Elvidge¹, D. E. Oram^{2,3}, J. C. Laube², A. K. Baker¹, S. A. Montzka⁴, S. Humphrey², D. A. O'Sullivan^{2,*}, and C. A. M. Brenninkmeijer¹

 ¹CARIBIC, Max Plank Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
 ²Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
 ³National Centre for Atmospheric Science, University of East Anglia, Norwich, NR4 7TJ, UK
 ⁴National Oceanic and Atmospheric Administration, Boulder, CO 80304, USA
 * now at: Met Office, FitzRoy road, Exeter, EX1 3PB, UK thway to move air rapidly into the atosphere despite their short

still a small portion of ODS but they

@AGUPUBLICATIONS

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE 10.1002/2013JD021396

Key Points:

 CARIBIC observations show overview of tropospheric distributions of CH₃CI Biomass burning/noncombustion sources contribute to the CH₃CI distributions
 CH₃CI emitted in South Asia shows a unique biofuel signal Methyl chloride in the upper troposphere observed by the CARIBIC passenger aircraft observatory: Large-scale distributions and Asian summer monsoon outflow

T. Umezawa¹, A. K. Baker¹, D. Oram², C. Sauvage¹, D. O'Sullivan^{2,3}, A. Rauthe-Schöch¹, S. A. Montzka⁴, A. Zahn⁵, and C. A. M. Brenninkmeijer¹

¹Max Planck Institute for Chemistry, Mainz, Germany, ²National Centre for Atmospheric Science, Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, New Mat 2017, and Mat 2017, and

Nontreal Protocol

Atmos. Chem. Phys., 15, 1939–1958, 2015 www.atmos-chem-phys.net/15/1939/2015/ doi:10.5194/acp-15-1939-2015 © Author(s) 2015. CC Attribution 3.0 License. Atmospheric Chemistry and Physics

Increasing concentrations of dichloromethane, CH₂Cl₂, inferred from CARIBIC air samples collected 1998–2012

E. C. Leedham Elvidge¹, D. E. Oram^{2,3}, J. C. Laube², A. K. Baker¹, S. A. Montzka⁴, S. Humphrey², D. A. O'Sullivan^{2,*}, and C. A. M. Brenninkmeijer¹

 ¹CARIBIC, Max Plank Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
 ²Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
 ³National Centre for Atmospheric Science, University of East Anglia, Norwich, NR4 7TJ, UK
 ⁴National Oceanic and Atmospheric Administration, Boulder, CO 80304, USA
 *now at: Met Office, FitzRoy road, Exeter, EX1 3PB, UK

are gaining attention

nature geoscience

nces

ARTICLES https://doi.org/10.1038/s41561-018-0278-2

Rapid increase in ozone-depleting chloroform emissions from China

Xuekun Fang[®]^{1*}, Sunyoung Park², Takuya Saito³, Rachel Tunnicliffe^{4,5}, Anita L. Ganesan[®]^{5*}, Matthew Rigby[®]^{4*}, Shanlan Li², Yoko Yokouchi³, Paul J. Fraser⁶, Christina M. Harth⁷, Paul B. Krummel⁶, Jens Mühle[®]⁷, Simon O'Doherty⁴, Peter K. Salameh⁶, Peter G. Simmonds⁴, Ray F. Weiss[®]⁷, Dickon Young[®]⁴, Mark F. Lunt⁴, Alistair J. Manning⁸, Alicia Gressent¹ and Ronald G. Prinn¹

nonth<u>s and are not regulated by the</u>

still a small portion of ODS but they

nature **JGR** Atmospheres **©AGU** PUBLICATIONS **RESEARCH ARTICLE Recent Trends in Stratospheric Chlorine** Journal of Geophysical Resea 10.1029/2018JD029400 From Very Short-Lived Substances Methyl chlor **RESEARCH ARTICLE Key Points:** 10.1002/2013JD021396 by the CARI

Key Points:

 CARIBIC observations show overview of tropospheric distributions of CH₃CI Biomass burning/noncombustion sources contribute to the CH₃Cl distributions · CH₃Cl emitted in South Asia shows a unique biofuel signal

· Stratospheric chlorine from very short-lived substances increased by Large-scale

summer mo

T. Umezawa¹, A. K. I

A. Zahn⁵, and C. A.

¹Max Planck Institute for

3.8 ppt/year over 2004-2017, with a growth slowdown in 2015-2017 Chlorine from short-lived

- substances improves model representation of upper stratospheric HCl trends
- Short-lived chlorine offsets the 2004-2017 rate of upper stratospheric HCl decline by 15%

Supporting Information:

· Supporting Information S1

doi:10.5194/acp-15-1939-2015 © Author(s) 2015. CC Attribution 3.0 License.

Increasing concentrations

from CARIBIC air sample

E. C. Leedham Elvidge¹, D. E. Oram^{2,3}, J. C.

D. A. O'Sullivan^{2,*}, and C. A. M. Brenninkme

¹CARIBIC, Max Plank Institute for Chemistry, 2

²Centre for Ocean and Atmospheric Sciences, S

Norwich Research Park, Norwich, NR4 7TJ, UK

³National Centre for Atmospheric Science, University

⁴National Oceanic and Atmospheric Administrat

*now at: Met Office, FitzRoy road, Exeter, EX1

Atmos. Chem. Phys., 15, 1939-1958, 2015

www.atmos-chem-phys.net/15/1939/2015/

iviontreal

Ryan Hossaini¹ (D), Elliot Atlas² (D), Sandip S. Dhomse³ (D), Martyn P. Chipperfield³ (D), Peter F. Bernath^{4,5} . Anton M. Fernando⁶, Jens Mühle⁷ . Amber A. Leeson¹ Stephen A. Montzka⁸ ⁽ⁱ⁾, Wuhu Feng^{3,9}, Jeremy J. Harrison^{10,11} ⁽ⁱ⁾, Paul Krummel¹² ⁽ⁱ⁾, Martin K. Vollmer¹³, Stefan Reimann¹³, Simon O'Doherty¹⁴, Dickon Young¹⁴, Michela Maione¹⁵, Jgor Arduini¹⁵, and Chris R. Lunder¹⁶

¹Lancaster Environment Centre, Lancaster University, Lancaster, UK, ²Rosenstiel School of Marine and Atmospheric Science (RSMAS), University of Miami, Coral Gables, FL, USA, ³School of Earth and Environment, University of Leeds, Leeds, UK, ⁴Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA, ⁵Department of Chemistry, University of Waterloo, Waterloo, ON, Canada, ⁶Department of Physics, Old Dominion University, Norfolk, VA, USA, ⁷Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA, ⁸National Oceanic and Atmospheric Administration (NOAA), Boulder, CO, USA, ⁹NCAS, University of Leeds, Leeds, UK, ¹⁰Department of Physics and Astronomy, University of Leicester, Leicester, UK, ¹¹National Centre for Earth Observation, University of

and Physics 🖁 🎾

Bottom-up anthropogenic dichloromethane emission estimates from China <u>htosn</u>l for the period 2005–2016 and predictions of future emissions

ഹി

<mark>_</mark>

Geophysical Research Letters

RESEARCH LETTER 10.1029/2018GL081455

Key Points:

- · Ozone depletion potentials of very short-lived substances (CHCl2, CH₂Cl₂, C₂Cl₄, and C₂H₄Cl₂) were
- calculated using a chemical transport model
- Calculated ozone depletion potentials vary by a factor of 2-3 depending on emission location, larger ODPs for Asian emissions
- Efficient transport of very short-lived substances from continental East Asia to tropical lower stratosphere lead to larger Asian ODPs

Supporting Information: Supporting Information S1

On the Regional and Seasonal Ozone Depletion Potential of Chlorinated Very Short-Lived Substances

Tom Claxton¹, Ryan Hossaini¹, Oliver Wild¹, Martyn P. Chipperfield^{2,3}, and Chris Wilson^{2,3}

¹Lancaster Environment Centre, University of Lancaster, Lancaster, UK, ²School of Earth and Environment, University of Leeds, Leeds, UK, ³National Centre for Earth Observation, University of Leeds, Leeds, UK

https://orcid.org/0000-0001-8494-0697

Abstract Chloroform (CHCl₃), dichloromethane (CH₂Cl₂), perchloroethylene (C₂Cl₄), and 1,2-dichloroethane (C₂H₄Cl₂) are chlorinated Very Short-Lived Substances (Cl-VSLS) with a range of commercial/industrial applications. Recent studies highlight the increasing influence of Cl-VSLS on the stratospheric chlorine budget and therefore their possible role in ozone depletion. Here we evaluate the ozone depletion potential (ODP) of these Cl-VSLS using a three-dimensional chemical transport model and investigate sensitivity to emission location/season. The seasonal dependence of the ODPs is small, but ODPs vary by a factor of 2-3 depending on the continent of emission: 0.0143-0.0264 (CHCl₃), 0.0097-0.0208 (CH_2Cl_2) , 0.0057-0.0198 (C₂Cl₄), and 0.0029-0.0119 (C₂H₄Cl₂). Asian emissions produce the largest ODPs owing to proximity to the tropics and efficient troposphere-to-stratosphere transport of air originating from industrialized East Asia. The Cl-VSLS ODPs are generally small, but the upper ends of the CHCl₃ and

StratoClim Project

This project is funded by the European Union

StratoClim

	Overview	
	News	
	Background	
	Workpackages	
►	Media	
►	Consortium	
	Publications	
►	Events	
	Downloads	
StratoClim long-term data storag StratoClim project came to an en on May 2019.		

Stratospheric and upper tropospheric processes for better climate predictions

Duration: 1 December 2013 - 30 November 2018 Contact: Prof. Dr. Markus Rex

StratoClim is a collaborative research project funded by the European Commission 7th Framework programme. The main objective of the project is to produce more reliable projections of climate change and stratospheric ozone by improving the understanding of key processes in the Upper Troposphere and Stratosphere (UTS).

Stratospheric and upper tropospheric

processes for better climate predictions

StratoClim's main objective is to produce more reliable projections of climate change and stratospheric ozone by improving the understanding of key processes in the Upper Troposphere and Stratosphere (UTS).

At present, complex interactions and feedbacks are inadequately represented in the global models with respect to natural and anthropogenic emissions of greenhouse gases, aerosol precursors and other important trace gases, the atmospheric dynamics affecting transport into and through the UTS, and chemical and microphysical processes governing the chemistry and the radiative properties of the UTS.

StratoClim will

StratoClim

(a) improve the understanding of the microphysical, chemical and dynamical processes that determine the composition of the UTS, such as the formation, loss and redistribution of aerosol, ozone and water vapour, and how these processes will be affected by climate change;
 (b) implement these processes and fully include the interactive feedback from UTS ozone and aerosol on surface climate in CCMs and ESMs.

Through StratoClim, new measurements will be obtained in following key campaigns:

home • news • Wiki • imprint • contact • search

Figure 1: Whole air sample locations

Long-lived ODS phased out under Montreal Protocol

Similar mixing ratio, with little variation, to NOAA background average

Decrease in lower stratosphere, mixing and photochemical degradation

Halon-1211 and CFC-11 (not shown) decrease used to define stratosphere – gray band

Figure 2: Long-lived

Long-lived ODS phase out in progress under Montreal Protocol

Two background sets: American Samoa lower line, Mauna Loa higher

Enhanced above background: 5% for HCFC-22 and 25% for CH_3Br Similar for HCFC-141b (6%) and CH_3Cl (14%)

Large emissions in the monsoon region

Figure 2: Long-lived

• AMO-16 • AMA-17 • Ground samples 2017 ····· Background mixing ratios

•AMO-16 •AMA-17 • Ground samples 2017 = Reported mixing ratios at tropical tropopause

•AMO-16 •AMA-17 •Ground samples 2017

Reported mixing ratios at tropical tropopause

•AMO-16 •AMA-17 •Ground samples 2017

Reported mixing ratios at tropical tropopause

10-Day CLaMS Backward Trajectory end points in the model BL (9% of total) CH₂Cl₂ [ppt]

High DCM in east Asia/China and north-western flank of Tibetan Plateau (NW India and N Pakistan) CH₂Cl₂ [ppt]

Low DCM along Tibetan Plateau and Bay of Bengal

Equivalent Chlorine (ECl)

- Sum of Cl and Br mixing ratios from all halogen source gases. Br is multiplied by 60 to account for greater effectiveness (60-65x) at depleting ozone
- Two methods presented:
 - Global estimate for summer 2017 based on NOAA ground sites
 - AMA-17 estimate

Global Estimate

- Summer 2017 global monthly means from the NOAA/ESRL halocarbon program
- Cape Grim, Tasmania UEA measurements in early 2018
 - Shifted 6 months back, a good proxy for air entering the stratosphere from the UT in the tropics
- HCFCs and methyl halides data used from Mauna Loa and American Samoa (July-August 2017) since significant tropospheric sinks
- VSLS used WMO 2018 values at level of zero radiative heating (LZRH)
 - Based on campaigns in West Pacific from 2013-2014

AMA-17 Estimate

- Samples from 355 375 K to represent expanded LZRH region during ASM
- They did not consider the breakdown products of VSLS so this is a lower estimate

Comparison of the Global Estimate of Ed (See S1) and the Regional Estimate Based	quivalent Chlorine (ECl) Based on Cape Grim, . d on the Air Samples From AMA-17	NOAA and WMO Mixing Ratios
	Global estimate ECl (ppt) 355–365 K	AMA-17 ECl (ppt) 355–375 K
Chlorinated VSLSs	89-132 (2%-3%)	163-393 (4%-8%)
CH_2Cl_2	59-89	130-272
CHCl ₃	19–24	24–74
CH ₂ ClCH ₂ Cl	10–19	9–47
Brominated VSLSs	71–118	58-92
CH ₂ Br ₂	71–118	58-92
Long-lived chlorine	3,159-3,186	3,188-3,356
CFCs	1,960	1,939–1,997
HCFCs	310	317-343
CH ₃ CCl ₃	6.5	4.8-6.0
CCl ₄	321	321-338
CH ₃ Cl	558-586	603–669
Halon-1211	3.4	3.4-3.5
Long-lived bromine	789-811	842-963
Halons	402	398-414
CH ₃ Br	387-409	445-549
Estimated (not measured) ^a	79–253	79–253
Total equivalent chlorine (ECl)	4,186-4499	4,331-5057
	$(4,107-4,246)^{b}$	$(4,252-4,804)^{b}$

Table 1

Abbreviation: VSLS, very short-lived substance.

^aFor the compounds that were not measured in this study the WMO 2018 reported values were used in both estimates. ^bECl excluding compounds that were not measured in this study.

Table 1

Comparison of the Global Estimate of Equivalent Chlorine (ECl) Based on Cape Grim, NOAA and WMO Mixing Ratios (See S1) and the Regional Estimate Based on the Air Samples From AMA-17

	AMA-17 ECl (ppt) 355–375 K		
Chlorinated VSLSs	89-132 (2%-3%)	163-393 (4%-8%)	
CH ₂ Cl ₂	59–89	130-272	
CHCl ₃	19–24	24–74	
CH2CICH2CI	10–19	9–47	
Bro Higher but not unexpected for this region and time of year			
Long-lived chlorine	3,159-3,186	3,188-3,356	
CFCs	1,960	1,939–1,997	
HCFCs	310	317-343	
CH ₃ CCl ₃	6.5	4.8-6.0	
CCl ₄	321	321-338	
CH ₃ Cl	558–586	603-669	
Halon-1211	3.4	3.4-3.5	
Long-lived bromine	789-811	842-963	
Halons	402	398-414	
CH ₃ Br	387-409	445-549	
Estimated (not measured) ^a	79–253	79–253	
Total equivalent chlorine (ECl)	4,186-4499	4,331-5057	
	$(4,107-4,246)^{b}$	$(4,252-4,804)^{b}$	

Abbreviation: VSLS, very short-lived substance.

^aFor the compounds that were not measured in this study the WMO 2018 reported values were used in both estimates. ^bECl excluding compounds that were not measured in this study.

 $(4,252-4,804)^{b}$

Comparison of the Global Estimate of Equivalent Chlorine (ECl) Based on Cape Grim, NOAA and WMO Mixing Ratios (See S1) and the Regional Estimate Based on the Air Samples From AMA-17 Global estimate ECl (ppt) 355–365 K AMA-17 ECl (ppt) 355-375 K Chlorinated VSLSs 89-132 (2%-3%) 163-393 (4%-8%) CH_2Cl_2 130-272 59-89 $CHCl_3$ 24-74 19-24 CH₂ClCH₂Cl 10-19 9-47 Brominated VSLSs 71-118 58-92 CH_2Br_2 58-92 71-118 Long-lived chl -3,356 Both estimates have big ranges that overlap CFCs -1,997 HCFCs 310 317-343 CH₃CCl₃ 6.5 4.8 - 6.0 CCl_4 321 321-338 CH₃Cl 558-586 603-669 Halon-1211 3.4-3.5 3.4 Long-lived bromine 789-811 842-963 Halons 402 398-414 CH₃Br 445-549 387-409 Estimated (not measured)^a 79-253 79-253 4,186-4499 Total equivalent chlorine (ECl) 4,331-5057

Abbreviation: VSLS, very short-lived substance.

Table 1

^aFor the compounds that were not measured in this study the WMO 2018 reported values were used in both estimates. ^bECl excluding compounds that were not measured in this study.

 $(4,107-4,246)^{b}$

Comparison of the Global Estimate of Eq (See S1) and the Regional Estimate Based	uivalent Chlorine (ECl) Based on Cape Grim, l on the Air Samples From AMA-17	NOAA and WMO Mixing Ratios	
	Global estimate ECl (ppt) 355–365 K	AMA-17 ECl (ppt) 355–375 K	
Chlorinated VSLSs	89–132 (2%–3%)	163-393 (4%-8%)	
CH ₂ Cl ₂	59–89	130-272	
CHCl ₃	19–24	24–74	
CH ₂ ClCH ₂ Cl	10–19	9–47	
Brominated VSLSs	71–118	58-92	
CH ₂ Br ₂	71–118	58-92	
Long-lived chlorine	3,159–3,186	3,188-3,356	
CFCs	1,960	1,939–1,997	
HCFCs	310	317-343	
CH ₃ CCl ₃	6.5	4.8-6.0	
CCl ₄	321	321-338	
CH ₃ Cl	558–586	603-669	
Halon-1211	3.4	3.4-3.5	
Long-lived bromine	789-811	842-963	
Halons Slightly higher for AMA-17 due to HCFCs and CH ₂ Cl			
CH ₃ Br 387-409 3			
Estimated (not measured) ^a	79–253	79–253	
Total equivalent chlorine (ECl)	4,186-4499	4,331–5057	
	(4,107–4,246) ^b	(4,252–4,804) ^b	

 Table 1

 Comparison of the Global Estimate of Equivalent Chlorine

Abbreviation: VSLS, very short-lived substance.

^aFor the compounds that were not measured in this study the WMO 2018 reported values were used in both estimates. ^bECl excluding compounds that were not measured in this study.

	Global estimate ECl (ppt) 355–365 K	AMA-17 ECl (ppt) 355–375 K
Chlorinated VSLSs	89–132 (2%–3%)	163-393 (4%-8%)
CH_2Cl_2	59–89	130-272
CHCl ₃	19–24	24-74
CH ₂ ClCH ₂ Cl	10–19	9–47
Brominated VSLSs	71–118	58-92
CH_2Br_2	71–118	58-92
Long-lived chlorine	3,159–3,186	3,188-3,356
CFCs	1,960	1,939–1,997
HCFCs	310	317-343
CH ₃ CCl ₃	6.5	4.8-6.0
CCl ₄	321	321-338
CH ₃ Cl	558-586	603-669
Halon-1211	3.4	3.4–3.5
Long-lived bromine	789-811	842-963
Halons	402	398-414
CH ₃ Br	387–409	445-549

Table 1

CH₃Br higher for AMA-17 suggesting source in monsoon input region

(4,107-4,246)^b

(4,252-4,804)^b

Abbreviation: VSLS, very short-lived substance.

^aFor the compounds that were not measured in this study the WMO 2018 reported values were used in both estimates. ^bECl excluding compounds that were not measured in this study.

Table 1

Comparison of the Global Estimate of Equivalent Chlorine (ECl) Based on Cape Grim, NOAA and WMO Mixing Ratios (See S1) and the Regional Estimate Based on the Air Samples From AMA-17

	Global estimate ECl (ppt) 355–365 K	AMA-17 ECl (ppt) 355–375 K
Chlorinated VSLSs	89-132 (2%-3%)	163-393 (4%-8%)
CH ₂ Cl ₂	59-89	130-272
CHCl ₃	19–24	24-74
CH ₂ ClCH ₂ Cl	10–19	9–47
Brominated VSLSs	71–118	58-92
CH_2Br_2	71–118	58-92

"If we assume that 5% of the additional ECI [estimated % in NH from ASM, Ploeger et al. (2017)] from the AMA-17 estimate ends up in the lower stratosphere of the Northern Hemisphere, this translates to an additional 0.3 - 34.9 ppt of ECI from all measured compounds, of which 1.6 - 15.2 ppt are from Cl-VSLS."

Further evidence that CI-VSLS and methyl halides may be significant

Estimated (not measured) ^a	79–253	79–253
Total equivalent chlorine (ECl)	4,186-4499	4,331–5057
	(4,107–4,246) ^b	(4,252–4,804) ^b

Abbreviation: VSLS, very short-lived substance.

^aFor the compounds that were not measured in this study the WMO 2018 reported values were used in both estimates. ^bECl excluding compounds that were not measured in this study.

Equivalent Effective Stratospheric Chlorine (EESC)

- "EESC is a metric used to describe the combined impact of chlorine and bromine on stratospheric ozone and the temporal development of this effect due to tropospheric trends." (Engel, Ribgy et al. 2018)
- Differs from Equivalent Chlorine because it factors in the effects of stratospheric transport and chemistry on releasing chlorine and bromine from long-lived ODS

Equivalent Effective Stratospheric Chlorine (EESC) Calculations

- Used the NOAA and Cape Grim data as the tropospheric background (1978 2018)
- Used two mean age-of-air:
 - 3 years (literature value for midlatitudes and highest mean age-of-air in AMO-16)
 - 2.4 years (highest mean age-of-air calculated in AMA-17)
- Fractional Release Factor (FRF) for VSLS calculated by comparing highest and lowest mixing ratio in tropopause (355 – 375 K) to mixing ratio above 375 K
- If interested → used the newer method of age-of-air (Leedham Elvidge et al. (2018)) to compare and "improved" FRF calculation

*Used "relevant age" EESC which takes into account interaction of chemical loss and transport time (based on Engel, Bönisch, et al 2018)

Figure 5: EESC

*Used "relevant age" EESC which takes into account interaction of chemical loss and transport time (Engel, Bönisch, et al 2018)

Figure 5: EESC

*Used "relevant age" EESC which takes into account interaction of chemical loss and transport time (Engel, Bönisch, et al 2018)

Figure 5: EESC

2000

VSLS cont	Including VSLS inc tributions increase	creases the EESC estir	EESC and the nate in NH ex	e range. ktratropical lo	wer (relevant
	strate	osphere by	8-26%.		SC which
AMO-16 EESC IS 12% higher than Engel, Bönisch, et	Table 2Regional Equivalent Effective StratospCalculated Using the Relevant age	heric Chlorine (EESC) Estin	mates From the AMO-16 and AN	1A-17 Campaigns	interaction of chemical loss and transport time
al (2018)	Campaign		EESC ^a	EESC + VSLS ^b	(Engel Bönisch et
**Excludes VSLS	AMA-17 (age-of-air 2.4 years) AMO-16 (age-of-air 2.4 years) AMO-16 (age-of-air 3 years)		1,630–1,650 1,483–1,495 1,861–1,872	1,804–2,087 1,604–1,692 1,988–2,075	al 2018)
Apples to Apples comparison with	Engel, Bönisch et al. (2018a) (age-of- Note. Also shown is the global EESC ^a EESC including CFC-13, CFC-113a, short-lived substances (VSLSs).	air 3 years) estimate from Engel, Bönis HCFC-133a, and Halon-24	1,646 (in 2017) sch et al. (2018b). 402. ^b EESC ^a with an additional o	– contribution from very	
an age of air of 3 years	500				
	436-442	455-464	345-350	Long-lived bromine	
	AMO-16 A0A 3 yrs	AMO-16 A0A 2.4 yrs	AMA-17 A0A 2.4 yrs		Figure 5: FFSC

Main Conclusions from Adcock et al. (2020)

Highlights the importance of the ASM as a fast transport mechanism in an important ODS region and the importance of Cl-VSLS in the northern extratropical lower stratosphere

- First set of in situ data for many ODS in lower stratosphere over ASM
- CI-VSLS in ASM region higher than reported in 2018 WMO report. VSLS increase EESC estimate by 8-26% in NH extratropical lower stratosphere.
- The ECI and EESC for long-lived species is also higher than reported global averages recently.
 - The large emission sources and amount of input to the stratosphere during ASM are the reason

Unexpected nascent atmospheric emissions of three ozone-depleting hydrochlorofluorocarbons

Martin K. Vollmer^{a,1}, Jens Mühle^b, Stephan Henne^a, Dickon Young^c, Matthew Rigby^c, Blagoj Mitrevski^d, Sunyoung Park^e, Chris R. Lunder^f, Tae Siek Rhee^g, Christina M. Harth^b, Matthias Hill^a, Ray L. Langenfelds^d, Myriam Guillevic^a, Paul M. Schlauri^a, Ove Hermansen^f, Jgor Arduini^{h,i}, Ray H. J. Wang^j, Peter K. Salameh^b, Michela Maione^{h,i}, Paul B. Krummel^d, Stefan Reimann^a, Simon O'Doherty^c, Peter G. Simmonds^c, Paul J. Fraser^d, Ronald G. Prinn^k, Ray F. Weiss^b, and L. Paul Steele^d

^aLaboratory for Air Pollution and Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland; ^bScripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093; ^cAtmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Bristol BS8 1TL, United Kingdom; ^dClimate Science Centre, CSIRO Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Aspendale, VIC 3195, Australia; ^eDepartment of Oceanography, Kyungpook National University, Daegu 41566, South Korea; ^fMonitoring and Instrumentation Technology Department, Norwegian Institute for Air Research, 2007 Kjeller, Norway; ^gDivision of Ocean Sciences, Korea Polar Research Institute, Incheon 21990, South Korea; ^hDepartment of Pure and Applied Sciences, University of Urbino, 61029 Urbino, Italy; ⁱInstitute of Atmospheric Sciences and Climate, Italian National Research Council, 40129 Bologna, Italy; ^jSchool of Earth and Atmospheric Sciences, General Institute of Technology, Atlanta, GA 30332; and ^kCenter for Global Change Science, Massachusetts Institute of Technology, Cambridge, MA 02139

Edited by Susan Solomon, Massachusetts Institute of Technology, Cambridge, MA, and approved December 7, 2020 (received for review Ma

Significance

We demonstrate the need to detect and track unexpected substances in the atmosphere and to locate their sources. Here, we report on three hydrochlorofluorocarbons (HCFCs) that have no known end-uses. HCFC-132b (CH₂ClCClF₂) is newly discovered in the global atmosphere. We identify East Asia as the dominant source region for global emissions of this compound and of HCFC-133a (CH₂ClCF₃). We also quantify global emissions of HCFC-31 (CH₂ClF). These compounds are most likely emitted as intermediate by-products of chemical production processes. The early discovery and identification of such unexpected emissions can identify the related industrial practices and help to develop and manage environmental policies to reduce unwanted and potentially harmful emissions before the scale of the problem becomes more costly to mitigate.

PNAS February 2, 2021 118 (5) e2010914118; https://doi.org/10.1073/pnas.2010914118 Was also compared to the Newman et al. (2007) method

Fairly good agreement though mean-age was slightly higher.

