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Abstract

Recent studies show that the Asian summer monsoon anticyclone (ASMA) transports
emissions from the rapidly industrializing nations in Asia into the tropical upper
troposphere. Here, we present a unique set of measurements on over 100 air samples
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Paper Road Map

* Brief Background Information on VSLS and StratoClim
 StratoClim Long-Lived ODS

 StratoClim Short-Lived ODS

* Model Back-Trajectory Analysis

e Equivalent Chlorine (ECI)

* Equivalent Effective Stratospheric Chlorine (EESC)

* Wrap-up



Main Conclusions from Adcock et al. (2020)

**Highlights the importance of the ASM as a fast transport
mechanism in an important ODS region and the importance of Cl-
VSLS in the northern extratropical lower stratosphere**

 First set of in situ data for many ODS in lower stratosphere over ASM

* CI-VSLS in ASM region higher than reported in 2018 WMO report. VSLS increase EESC
estimate by 8-26% in NH extratropical lower stratosphere.

* The ECII and EESC for long-lived species is also higher than reported global averages
recently.

* The large emission sources and amount of input to the stratosphere during ASM are
the reason
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Very Short-Lived Substances (VSLS): Who Cares?

* Atmospheric lifetime less than 6 months and are not regulated by the
Montreal Protocol

* ASM anticyclone is an efficient pathway to move air rapidly into the
stratosphere — VSLS can reach stratosphere despite their short
lifetime.

* Cl-VSLS emissions are on the rise, still a small portion of ODS but they
are gaining attention
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Key Points:

« Stratospheric chlorine from very
short-lived substances increased by
3.8 ppt/year over 2004-2017, with a
growth slowdown in 2015-2017

+ Chlorine from short-lived
substances improves model
representation of upper
stratospheric HCI trends

«+ Short-lived chlorine offsets the
2004-2017 rate of upper
stratospheric HCI decline by 15%
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Key Points:

« Ozone depletion potentials of very
short-lived substances (CHCl,,
CH,Cl,, C,Cly, and C,H,Cl,) were
calculated using a chemical
transport model

+ Calculated ozone depletion
potentials vary by a factor of 2-3
depending on emission location,
larger ODPs for Asian emissions

« Efficient transport of very
short-lived substances from
continental East Asia to tropical
lower stratosphere lead to larger
Asian ODPs
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Abstract Chloroform (CHCly), dichloromethane (CH,Cl,), perchloroethylene (C,Cly), and
1,2-dichloroethane (C,H4Cly) are chlorinated Very Short-Lived Substances (Cl-VSLS) with a range of
commercial/industrial applications. Recent studies highlight the increasing influence of CI-VSLS on the
stratospheric chlorine budget and therefore their possible role in ozone depletion. Here we evaluate the
ozone depletion potential (ODP) of these Cl-VSLS using a three-dimensional chemical transport model and
investigate sensitivity to emission location/season. The seasonal dependence of the ODPs is small, but ODPs
vary by a factor of 2-3 depending on the continent of emission: 0.0143-0.0264 (CHCl3), 0.0097-0.0208
(CH,Cl5), 0.0057-0.0198 (C5Cly), and 0.0029-0.0119 (C,H4Cl,). Asian emissions produce the largest ODPs
owing to proximity to the tropics and efficient troposphere-to-stratosphere transport of air originating from
industrialized East Asia. The CI-VSLS ODPs are generally small, but the upper ends of the CHCl; and




StratoClim Project

Stratospheric and upper tropospheric
rocesses for better climate predictions

This project is funded
by the European Union

StratoClim g

‘ Overview Stratospheric and upper tropospheric processes for better climate
predictions

News .
Duration: 1 December 2013 - 30 November 2018 2 Y B
StratoClim

Background

Contact: Prof. Dr. Markus Rex

StratoClim is a collaborative research project funded by the European Commission 7th Framework programme. The main objective of the project is to
Workpackages produce more reliable projections of climate change and stratospheric ozone by improving the understanding of key processes in the Upper
Troposphere and Stratosphere (UTS).

Media
StratoClim's main objective is to produce more reliable projections of climate change and stratospheric ozone by improving the understanding of key
Consortium processes in the Upper Troposphere and Stratosphere (UTS).
Publications At present, complex interactions and feedbacks are inadequately represented in the global models with respect to natural and anthropogenic
emissions of greenhouse gases, aerosol precursors and other important trace gases, the atmospheric dynamics affecting transport into and through
Events the UTS, and chemical and microphysical processes governing the chemistry and the radiative properties of the UTS.
Downloads StratoClim will

(a) improve the understanding of the microphysical, chemical and dynamical processes that determine the composition of the UTS, such as the
Shie toclim ki T At S formation, loss and redistribution of aerosol, ozone and water vapour, and how these processes will be affected by climate change;

StratoClim project came to an end (b) implement these processes and fully include the interactive feedback from UTS ozone and aerosol on surface climate in CCMs and ESMs.

on May 2019.

& s T Through StratoClim, new measurements will be obtained in following key campaigns:
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Long-lived ODS phased out under Montreal Protocol
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Long-lived ODS phase out in progress under Montreal

Protocol
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Low DCM along Tibetan Plateau and Bay of Bengal
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Equivalent Chlorine (ECI)

* Sum of Cl and Br mixing ratios from all halogen source gases. Br is
multiplied by 60 to account for greater effectiveness (60-65x) at
depleting ozone

 Two methods presented:

* Global estimate for summer 2017 based on NOAA ground sites
* AMA-17 estimate



Global Estimate

* Summer 2017 global monthly means from the NOAA/ESRL
halocarbon program

* Cape Grim, Tasmania UEA measurements in early 2018

» Shifted 6 months back, a good proxy for air entering the stratosphere from
the UT in the tropics

* HCFCs and methyl halides data used from Mauna Loa and American
Samoa (July-August 2017) since significant tropospheric sinks

e VVSLS used WMO 2018 values at level of zero radiative heating (LZRH)
* Based on campaigns in West Pacific from 2013-2014



AMA-1/ Estimate

e Samples from 355 — 375 K to represent expanded LZRH region during
ASM

* They did not consider the breakdown products of VSLS so this is a
lower estimate



Table 1

Global Estimate

AMA-17 Estimate

Comparison of the Global Estimate of Equivalent Chlorine (ECI) Based on Cape Grim, NOAA and WMO Mixing Ratios
(See S1) and the Regional Estimate Based on the Air Samples From AMA-17

Global estimate ECI (ppt) 355-365 K

AMA-17 ECl (ppt) 355-375 K

Chlorinated VSLSs 89-132 (2%-3%) 163-393 (4%-8%)
CH,Cl, 59-89 130-272
CHCl, 19-24 24-74
CH-,CICH:CI 10-19 9-47
Brominated VSLSs 71-118 58-92
CH,Br, 71-118 58-92
Long-lived chlorine 3,159-3,1%6 3,188-3,356
CFCs 1,960 1,939-1,997
HCFCs 310 317-343
CH,;CCl, 6.5 4.8-6.0
CCly 321 321-338
CH,Cl 558-586 603-669
Halon-1211 34 3.4-3.5
Long-lived bromine 789-811 842-963
Halons 402 398414
CH;Br 387-409 445-549
Estimated (not measured)’ 79-253 79-253
Total equivalent chlorine (ECI) 4,186-4499 4,331-5057
(4,107-4,246)" (4,252-4,804)"

Abbreviation: VSLS, very short-lived substance.

*For the compounds that were not measured in this study the WMO 2018 reported values were used in both estimates.
PECI excluding compounds that were not measured in this study.




Global Estimate AMA-17 Estimate

Table 1
Comparison of the Global Estimate of Equivalent Chlorine (ECI) Based on Cape Grim, NOAA and WMO Mixing Ratios
(See S1) and the Regional Estimate Based on the Air Samples From AMA-17

Global estimate ECI (ppt) 355-365 K AMA-17 ECI (ppt) 355-375 K

Chlorinated VSLSs 89-132 (2%-3%) 163-393 (4%-8%)
CH,ClL, 59-89 130-272
CHCl, 19-24 24-74
CH,CICH,Cl 10-19 9-47

2‘-‘“ Higher but not unexpected for this region and time of year
H

Long-lived chlorine 3,159-3,1%6 3,188-3,356
CFCs 1,960 1,939-1,997
HCFCs 310 317-343
CH,;CCl, 6.5 4.8-6.0
CCly 321 321-338
CH,Cl 558-586 603-669
Halon-1211 34 3.4-3.5
Long-lived bromine 789-811 842-963
Halons 402 398414
CH;Br 387-409 445-549
Estimated (not measured)’ 79-253 79-253
Total equivalent chlorine (ECI) 4,186-4499 4,331-5057
(4,107-4,246)" (4,252-4,804)"

Abbreviation: VSLS, very short-lived substance.

*For the compounds that were not measured in this study the WMO 2018 reported values were used in both estimates.
PECI excluding compounds that were not measured in this study.



Global Estimate AMA-17 Estimate

Table 1
Comparison of the Global Estimate of Equivalent Chlorine (ECI) Based on Cape Grim, NOAA and WMO Mixing Ratios
(See S1) and the Regional Estimate Based on the Air Samples From AMA-17

Global estimate ECI (ppt) 355-365 K AMA-17 ECI (ppt) 355-375 K

Chlorinated VSLSs 89-132 (2%-3%) 163-393 (4%-8%)
CH,Cl, 59-89 130-272
CHCl, 19-24 24-74
CH->CICH-CI 10-19 9-47
Brominated VSLSs 71-118 58-92
CH,Br, 71-118 58-92
Long-lived ch— 1-3,356
CFCs Both estimates have big ranges that overlap |19
HCFCs 310 317-343
CH,;CCl, 6.5 4.8-6.0
CCly 321 321-338
CH,Cl 558-586 603-669
Halon-1211 34 3.4-3.5
Long-lived bromine 789-811 842-963
Halons 402 398-414
CH;Br 387-409 445-549
Estimated (not measured)’ 79-253 79-253
Total equivalent chlorine (ECI) 4,186-4499 4,331-5057
(4,107-4,246)" (4,252-4,804)"

Abbreviation: VSLS, very short-lived substance.

*For the compounds that were not measured in this study the WMO 2018 reported values were used in both estimates.
PECI excluding compounds that were not measured in this study.




Global Estimate AMA-17 Estimate

Table 1
Comparison of the Global Estimate of Equivalent Chlorine (ECI) Based on Cape Grim, NOAA and WMO Mixing Ratios
(See S1) and the Regional Estimate Based on the Air Samples From AMA-17

Global estimate ECI (ppt) 355-365 K AMA-17 ECI (ppt) 355-375 K

||

Chlorinated VSLSs 89-132 (2%-3%) 163-393 (4%-8%)
CH,Cl, 59-89 130-272
CHCl, 19-24 24-74
CH-,CICH:CI 10-19 9-47
Brominated VSLSs 71-118 58-92
CH,Br, 71-118 58-92
Long-lived chlorine 3,159-3,1%6 3,188-3,356
CFCs 1,960 1,939-1,997
HCFCs 310 317-343 mmee———
CH,;CCl, 6.5 4.8-6.0
CCly 321 321-338
CH,CI 558-586 603-669 C——
Halon-1211 34 3.4-3.5
Long-lived bromine 789-811 842-963
talons | Slightly higher for AMA-17 due to HCFCs and CH,ClI
CH,Br SOT=FU7 =0T
Estimated (not measured)’ 79-253 79-253
Total equivalent chlorine (ECI) 4,186-4499 4,331-5057
(4,107-4,246)" (4,252-4,804)"

Abbreviation: VSLS, very short-lived substance.

*For the compounds that were not measured in this study the WMO 2018 reported values were used in both estimates.
PECI excluding compounds that were not measured in this study.



Table 1

Global Estimate

AMA-17 Estimate

Comparison of the Global Estimate of Equivalent Chlorine (ECI) Based on Cape Grim, NOAA and WMO Mixing Ratios
(See S1) and the Regional Estimate Based on the Air Samples From AMA-17

Global estimate ECI (ppt) 355-365 K

AMA-17 ECl (ppt) 355-375 K

Chlorinated VSLSs 89-132 (2%-3%) 163-393 (4%-8%)
CH,ClL, 59-89 130-272
CHCl, 19-24 24-74
CH,CICH,Cl 10-19 9-47
Brominated VSLSs 71-118 58-92
CH,Br, 71-118 58-92
Long-lived chlorine 3,159-3,1%6 3,188-3,356
CFCs 1,960 1,939-1,997
HCFCs 310 317-343
CH,CCl, 6.5 4.8-6.0
CCL 321 321-338
CH,Cl 558-586 603-669
Halon-1211 34 3.4-3.5
Long-lived bromine 789-811 842-963
Halons 402 398414
CH;Br 387409 445-549

CH,Br higher for AMA-17 suggesting source in monsoon input region

(4,107-4,246)" (4,252-4,804)"

Abbreviation: VSLS, very short-lived substance.

*For the compounds that were not measured in this study the WMO 2018 reported values were used in both estimates.
PECI excluding compounds that were not measured in this study.




Global Estimate AMA-17 Estimate

Table 1
Comparison of the Global Estimate of Equivalent Chlorine (ECI) Based on Cape Grim, NOAA and WMO Mixing Ratios
(See S1) and the Regional Estimate Based on the Air Samples From AMA-17

Global estimate ECI (ppt) 355-365 K AMA-17 ECI (ppt) 355-375 K

Chlorinated VSLSs 89-132 (2%-3%) 163-393 (4%—-8%)
CH,Cl, 59-89 130-272
CHCl, 19-24 24-74
CH-,CICH-CI 10-19 9-47
Brominated VSLSs 71-118 58-92
CH,Br, 71-118 58-92

“If we assume that 5% of the additional ECI [estimated % in NH from
ASM, Ploeger et al. (2017)] from the AMA-17 estimate ends up in the
lower stratosphere of the Northern Hemisphere, this translates to an
additional 0.3 —34.9 ppt of ECI from all measured compounds, of
which 1.6 — 15.2 ppt are from C|-VSLS.”

Further evidence that CI-VSLS and methyl halides may be significant

Estimated (not measured)’ 79-253 79-253
Total equivalent chlorine (ECI) 4,186-4499 4,331-5057
(4,107-4,246)" (4,252-4,304)°

Abbreviation: VSLS, very short-lived substance.
*For the compounds that were not measured in this study the WMO 2018 reported values were used in both estimates.
PECI excluding compounds that were not measured in this study.




Equivalent Effective Stratospheric Chlorine (EESC)

e “EESC is a metric used to describe the combined impact of chlorine
and bromine on stratospheric ozone and the temporal development
of this effect due to tropospheric trends.” (Engel, Ribgy et al. 2018)

* Differs from Equivalent Chlorine because it factors in the effects of
stratospheric transport and chemistry on releasing chlorine and
bromine from long-lived ODS



Equivalent Effective Stratospheric Chlorine (EESC)

Calculations

. lngcleg)the NOAA and Cape Grim data as the tropospheric background (1978 —

* Used two mean age-of-air:
* 3vyears (literature value for midlatitudes and highest mean age-of-air in AMO-16)
e 2.4 years (highest mean age-of-air calculated in AMA-17)

* Fractional Release Factor (FRF) for VSLS calculated by comparing highest and
lowest mixing ratio in tropopause (355 — 375 K) to mixing ratio above 375 K

* If interested = used the newer method of age-of-air (Leedham Elvidge et al.
(2018)) to compare and “improved” FRF calculation
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Main Conclusions from Adcock et al. (2020)

**Highlights the importance of the ASM as a fast transport
mechanism in an important ODS region and the importance of Cl-
VSLS in the northern extratropical lower stratosphere**

 First set of in situ data for many ODS in lower stratosphere over ASM

* CI-VSLS in ASM region higher than reported in 2018 WMO report. VSLS increase EESC
estimate by 8-26% in NH extratropical lower stratosphere.

* The ECII and EESC for long-lived species is also higher than reported global averages
recently.

* The large emission sources and amount of input to the stratosphere during ASM are
the reason
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Significance

We demonstrate the need to detect and track unexpected sub-
stances in the atmosphere and to locate their sources. Here,
we report on three hydrochlorofluorocarbons (HCFCs) that
have no known end-uses. HCFC-132b (CH,CICCIF;) is newly
discovered in the global atmosphere. We identify East Asia
as the dominant source region for global emissions of this
compound and of HCFC-133a (CH,CICF3). We also quantify
global emissions of HCFC-31 (CH,CIF). These compounds are
most likely emitted as intermediate by-products of chemical
production processes. The early discovery and identification
of such unexpected emissions can identify the related indus-
trial practices and help to develop and manage environmental
policies to reduce unwanted and potentially harmful emis-
sions before the scale of the problem becomes more costly
to mitigate.
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Was also compared to the Newman et al. (2007) method

Fairly good agreement though mean-age was slightly higher.
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