Effects of grid resolution on urban air quality simulation with MUSICAv0

Duseong S. Jo¹, Louisa K. Emmons¹, Patrick Callaghan², Simone Tilmes¹, Rokjin J. Park³, Jung-Hun Woo⁴, Benjamin A. Nault⁵, Pedro Campuzano-Jost⁶,⁷, Jose L. Jimenez⁶,⁷, Rahul A. Zaveri⁸, Richard C. Easter⁹, Balwinder Singh⁸, and Zheng Lu⁹

¹Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
²School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
³Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, MA, USA
⁴Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado, USA
⁵Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
⁶Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
⁷Department of Advanced Technology Fusion, Konkuk University, Seoul, South Korea
⁸Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
⁹Department of Atmospheric Sciences, Texas A&M University, College Station, Texas, USA

ACKNOWLEDGMENTS

BACKGROUND

Chemical concentrations vary between models
- Model intercomparison studies have shown up to an order of magnitude differences of chemicals between models.
- There are several factors affecting these differences, including chemistry, deposition, meteorological fields, emission, transport, etc.
- However, even with the same dynamics, physics, and chemistry, grid resolution can affect the model simulation.

RESULTS

Evaluation against aircraft O₃ observation
- All flights
- SMA (10 am - 2 pm)
- The model generally underestimates measured ozone during the KORUS-AQ campaign.
- Changing model grid resolution can change ozone by more than 10 ppbv in some cases.

Evaluation against surface O₃ observation
- Seoul (Urban)
- Taehwa (Urban downwind)
- Bangnyung (Rural)
- Fukue (Pristine)
- Higher model resolution is needed to capture urban chemistry with point sources, but the coarse grid is sufficient for rural background air.

TAKE HOME POINTS

- MUSICAv0 has been developed at NCAR to enable a computationally feasible global modeling framework with different horizontal resolutions for the region of interest. MUSICAv0 was released in the Community Earth System Model version 2.2.
- Two global grids (100 km and 50 km) and two regional grids (14 km and 7 km) show that chemical concentrations vary substantially even with the same chemical mechanism and dynamics.
- Higher model resolution becomes important for urban atmosphere with local sources, but the coarse grid is sufficient for rural background conditions.
- The model performance gets worse with fine grid resolution in some cases, implying that we need further study (e.g. chemical mechanism, emission, deposition) even if the model with coarse grid showed good performances over urban areas.

METHODS

Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0) (aka CAM-chem-SE-RR)
- No refinement (ne30) ~ 100 km
- Level 3 (ne30x8) ~ 14 km
- Level 4 (ne30x16) ~ 7 km
- No refinement (ne60) ~ 50 km
- This study was supported by an NCAR Advanced Study Program postdoctoral fellowship.

ACKNOWLEDGMENTS

This study was supported by an NCAR Advanced Study Program postdoctoral fellowship.
