Measurements and Emissions

Sachin Ghude, IITM Pune

large variety of measurement techniques for atmospheric trace are available:

Gas chromatography (GC, universal technique, in-situ)

Optical spectroscopy (universal technique, in-situ, remote sensing)

Chemiluminescence (e.g. for the detection of NO or O3)

Photoacoustic detection

Electrochemical techniques

Spectroscopic techniques are a powerful variety.

These techniques are highly sensitive, very specific, universally usable, give absolute results, and have the potential for remote sensing.

Gas chromatography

Retention time

separating the different components of a mixture

inert gas such as helium unreactive gas such as nitrogen microscopic layer of polymer on an inert solid support, inside a piece of metal tubing called a column

detector (FID) and the thermal conductivity detector (TCD)

thermal conductivity detector (TCD)

Electron capture detector (ECD)

Makeup gas N2 generates background current

flame ionization detector (FID)

Typical Methane CO and CO₂ Chromatogram observed at Antarctica

Month

Area of peak gives information about the concentration

The important technical criteria of spectroscopic instruments

- (1) are the wave-length region used
- (2) the physical principle (i.e. absorption or emission spectroscopy),
- (3) the arrangement of the light path (path in the open atmosphere or enclosed frequently folded path)
- (4) or the type of light source used.

Tunable Diode Laser Spectroscopy (TDLS)
Cavity Enhanced Absorption Spectroscopy (CESA)
Photo Acoustic Spectroscopy (PAS)
Light Detection And Ranging (LIDAR)
Differential Absorption LIDAR (DIAL)
Laser-Induced Fluorescence (LIF)
Cavity-Ringdown Spectroscopy (CRD)
Cavity Attenuated Phase Shift (CAPS)
Differential Optical Absorption Spectroscopy (DOAS)

Beer-Lambert Law: $I = I_0 \exp\{-\sigma [X] \ell\}$

Infrared CO₂ analyzer

2. Cavity ring-down spectroscopy

- Trap a pulse of light between two high-reflectivity mirrors
- Place the gas sample between the mirrors (in the cavity)
- Measure the lifetime of the light pulse in the cavity depends on concentration of sample

Cavity ring-down spectroscopy

Measurement of Carbon Monoxide

high-energy heated element to generate a beam of broad-band IR light

Measurement of Ozone

uses a high energy, mercury vapor lamp to generate a beam of UV light 254nm

Measurement of Ozone

The Measurement / Reference Cycle consists of:

TIME INDEX	STATUS
0 seconds	Measure/Reference Valve Opens to the Measure Path.
0 – 2 seconds	Wait Period. Ensures that the Absorption tube has been adequately flushed of any previously present gasses.
2 – 3 seconds	Analyzer measures the average UV light intensity of O_3 bearing Sample Gas (I) during this period.
3 seconds	Measure/Reference Valve Opens to the Reference Path.
3 – 5 seconds	Wait Period. Ensures that the Absorption tube has been adequately flushed of O_3 bearing gas.
5 – 6 seconds	Analyzer measures the average UV light intensity of Non-O $_3$ bearing Sample Gas (I ₀) during this period.
CYCLE REPEAT EVERY 6 SECONDS	

The Cavity Attenuated Phase Shift (CAPS) NO₂ monitor

Figure 14-1: T500U Optical Absorption Ce450 nm

UV Fluorescence SO₂ Analyzer

214 exication 330 emission

CHEMILUMINESCENCE NOx Analyzer

CHEMILUMINESCENCE NOx Analyzer

The Photoacoustic Extinctiometer (PAX)

simultaneously measure light scattering and absorption

Nephelometer to measure the light scattering.

The absorption through photoacoustic

Absorbing particles heat up and quickly transfer heat to the surrounding air. The periodic heating produces pressure waves that can be detected with a sensitive microphone.

Red (870 nm) – absorption is highly specific for black carbon (soot) particles; scattering best for large particles

Green (532 nm) – measures in the visual range, typically what the human eye observes *Blue (405 nm)* – absorption correlates to the organic, or brown carbon content; efficient scattering for fine and ultrafine particles

Microwave Radiometer

Temperature, Humidity and Liquid Profiler 21 K-band (22 to 30 GHz) channels 14 V-band (51 to 59 GHz) channels that measures energy emitted at sub-millimetre-to-centimetre wavelengths

SODAR

Used as a wind profiler to measure the scattering of sound waves by atmospheric turbulence

Fog Monitor (FM-120)

forward-scattering optical spectrometer

Emission

1.What is an Emissions Inventory and why do we need one?

1. Building and bottom up emission inventory

2.Satellite measurements and top down emission inventory

3.Data base for Global and regional Emission Inventory data sources

What is an Emission Inventory?

An emission inventory is an accounting of the amount of pollutants discharged into the atmosphere. An emission inventory usually contains the total emissions for one or more specific greenhouse gases or air pollutants, originating from all source categories in a

- •Specific geographic area
- •Certain period of time
- •Organized by type of data (e.g., point, area, mobile, biogenic)

What are Emission Sources? (Anthropogenic and Natural)

What information we get from EI?

• Where air pollution is emitted

(at surface: e.g. from mobile and st. sources, ocean, biomass, non-surface: e.g. Air craft, lightening, etc, Indoor activity or outdoor activity)

 How much is emitted from each source

What sources would be most effective to control

Information we could not get from EI?

- The distance that air pollutant emissions are transported
- The amount of air pollution to which people are exposed
- The health risk from the air pollution

Formation of secondary pollutants (e.g. ozone, PAN, HNO3).

Windblown dust

Why is emission inventory needed?

Air quality management (Identify sources of pollution and pollutants of concern)

Types of Inventories

- Bottom up El (emissions → concentrations)
- Top Down (concentrations → emissions)
 - 1. Direct estimate
 - 2. Combination of satellite and bottom up
 - Annual average
 - Seasonal inventories
 - Forecasted future estimates
 - Gridded / Modeling

Building an bottom up Emission Inventory

Edgar (global)

EDGAR-HTAPV1 SO₂ total emissions in ton per 0.1°x0.1°

India (regional)

Methodology

Emission Inventories are estimated as per the most widely used emission factor approach.

$$Em_{j,k} = \sum_{l} \sum_{m} FC_{k,l,m} \left[\sum_{n} EF_{j,k,m,n} X_{k,l,m,n} \right]$$

- *j,k,l,m,n* = Species, country, sector, fuel type, Technology
- Em = Total Emission
- FC = Fuel consumption , Kg/yr
- $EF \sum_{i=1}^{N} Emission$ factor specific to fuel/Technology
- X = Fraction of fuel for this sector consumed by a specific technology, where =1 for each fuel and sector

Schematic Methodology for the Development of Indian emission estimation

NO_x Emission in India (2011)

- Depend on the availability and reliability of the statistical information.
- Depend on historic information: easily outdated.
- Uncertainties in spatial resolution if only area totals are available.

If you don't like your result change your approach!

Constraining emissions with satellite observations

- Satellites have world-wide, homogeneous coverage.
- Correcting inventory for emission trends
- Detecting new (unknown) emission sources
- Emission trend analysis reveals effectiveness of air pollution policy
- Up-to-date emission inventories improve air quality forecasting

Top Down Approach

Top Down (concentrations \rightarrow emissions)

- 1. Direct estimate
- 2. Combination of satellite and bottom up

Top-down Approach

Martin et al. [2003, 2006] Lamsal et al. [2011]

= Adjustment of the emissions with satellite observations to reduce the disagreement between model and observation.

Assuming that horizontal transport of NOx is negligible, a posteriori emissions can be

α = ENOX_apriori / NO2_model

=> ENOX_aposteriori = α x NO2_satellite

ENOX = anthropogenic NOx emissions NO2 model= Modeled NO2 Tropospheric Column NO2 satellite= Satellite NO2 Tropospheric Column Satellite can only observe pollutant concentrations. These should be backtracked to their underlying emissions:

THIS IS AN INVERSE PROBLEM

Complicating factors:

- Transport of pollutant away from the source
- Lifetime of pollutant
- Variability in lifetime (temperature, chemical composition...)

Lifetime example (1): CO₂

Lifetime example (2): NO₂

tropospheric NO₂ in summer: \sim 4h, in winter: \sim 10h

OMI 2005-2008

Local, linear relation concentration and emission

Martin et al. (2006) Space-based constraints on NOx emission, J. Geophys. Res. Jaeglé et al. (2005) Global partitioning of NOx sources using (...), Faraday Discuss.

Assume linear relation between NO_x emission and NO_2 concentration:

Direct Approach $E_t = \alpha \Omega_{obs}$, $\alpha = (\Omega_{NO_X} / \Omega_{NO_2}) / \tau_{NO_X}$

Combine Approach

$$E = \alpha \Omega_{obs}$$
, $\alpha = E_{a \mod} / \Omega_{No2m}$

Local, linear relation concentration and emission **Direct Approach**

Combine Approach (Lab + Satellite) Satellite based estimates of Fire emission

$$E_i = A(x,t) \times B(x) \times FB \times ef_i$$

Use of fire hot spots Burnt area at location x and time t: A(x,t) land cover maps (identify vegetation type) Biomass loading : B(x) consumption estimates at location x: FB Emission factors (emission factors from filed lab experiment):

Complete Satellite based Approach

(a) Spatial distribution of OMI NO₂ (1 x 10^{13} molecules cm⁻²) for 2005 for regions with a maximum in the seasonal cycle in tropospheric NO₂ during March-April. In these regions the dominant source type is estimated as biomass burning. (b) ATSR fire counts over the India region during March-April 2005 averaged over $0.5^{\circ} \times 0.5^{\circ}$.

Local, linear relation concentration and emission

Advantages

• Fast, no inverse modeling needed

Disadvantages

- Transport to neighbouring grid cells neglected
- Only one emission update possible
- No new sources detected if *a priori* emission is 0

Local, linear relation applied iteratively

(Ghude et al., (2013), GRL

Assume linear relation between NOx emission and NO2 concentration:

$$E_{i+1} = \alpha \Omega_{obs,i}$$
 , $\alpha = E_i / \Omega_i$

Iterate until convergence criteria are met.

Advantages

- Iteration compensates for transport to neighbouring grid cells
- Accuracy of emissions improves

Disadvantages

• No new sources detected if a priori emission is 0

Flatland simulation

- "Toy" transport model in two dimension
- Simplified advection model allows analytic calculation of sensitivities

(6/20)

(11/20)

(17/20)

More realistic inversion: Sensitivities

When transport is taken into account, emissions in all grid cells can contribute to the observed concentration:

$$\Delta \Omega_i = \sum_j \alpha_{j \to i} \Delta E_j , \quad \alpha_{j \to i} = \frac{\partial \Omega_i}{\partial E_j}$$

Monte Carlo method

Konovalov et al. (2006), Inverse modeling of NOx emission on a continental scale (2006), ACP

Perform model runs with random perturbations on the *a priori* emissions to get a set of linear equations from which the sensitivities can be solved:

$$\Delta \Omega_1^i = \sum_j \alpha_{j \to i} \Delta E_1^j$$
$$\Delta \Omega_2^i = \sum_j \alpha_{j \to i} \Delta E_2^j$$

$$\Delta \Omega_N^i = \sum_j \alpha_{j \to i} \Delta E_N^j$$

. . .

The optimal number of random model runs depends on the desired accuracy. For two next neighbours: N = 100

Monte Carlo method

Advantages

 Takes transport of nearest neighbours into account

Disadvantages

 Time consuming calculations:
 ~100 model runs needed to solve transport from 2 nearest neighbours.

Convergence behaviour

Top-Down Approach for NOx- emission over India

- What we Need?
- Satellite observations of NO₂
- Chemical Transport Model

- Tropospheric NO₂ column is derived in three main steps involving the calculation of
- (1) slant column (using Differential Optical Absorption Spectroscopy (DOAS) approach in the 405–465 nm spectral

window),

- (2) tropospheric slant column (using modeling/ assimilation approach),
- (3) tropospheric vertical column (using air mass factor—AMF).

Top-Down Approach for NOx- emission over India

OMI Tropospheric NO₂ columns for the year 2005 Over India

Version: DOMINO v 2.0 (Level 2 data set) Cloud fraction less than 20% (clear sky scenes) Viewing Zenith Angle less than 35 (pixel size smaller than 34x14km²) Cloud radiance fraction less than 50% Solar Zenith Angle less than 80

WRF-Chem Simulation for Jan 2005

- Domain Period Resolution Emissions Fire Emission Biogenic Gas Ph. Chem Aerosol Ph. Chem
- : South Asia (0 45° N, 55 -110 ° E)
- : 2005
- : 55 km x 55 km
- : INTEX-B (A Priori)
- : NCAR Fire Inventory (FINN)
- : MEGAN
- : MOZART
 - : GOCART

Spatial distribution of OMI and WRF-Chem tropospheric NO₂ column for 2005 and its difference. Tropospheric column NO₂ unit is 10^{13} molecules/cm²/s.

Ghude S.Det al., GRL, 2013c

WRF simulation with *a postrioro* emission (T1)

Ghude S.Det al., GRL, 2013c

Ghude S.Det al., GRL, 2013

WRF simulation with *a priori* emission (Intex-B)

WRF simulation with a postrioro emission (T7)

Ghude S.Det al., GRL, 2013

A priori versus A posteriori Emissions

Spatial distribution of NO_X emission from (a) INTEX-B inventory, (b) optimized top-down Inventory and (c) their difference (emission unit is 10^{11} NO molecules/cm²/s)

A priori emission	A posteriori emission
1.56Tg N /year	1.42Tg N /year

Ghude S.Det al., GRL, 2013c

Seasonal Top-down Emission

Spatial distribution NO_X emissions from optimized Top-Down inventory (emission unit is 10^{11} NO molecules/cm²/s) for winter, pre-monsoon, monsoon and post-monsoon seasons for 2005.

Jne et al., AE, 2014 (Under review)

Annual Top-down Emission

Spatial distribution of annual NO_X emissions from optimized Top-Down inventory (emission unit is 10^{11} NO molecules/cm²/s) for 2005, 2006, 2007, 2008, 2009, 2010 years.

Sources of Uncertainties in Top-Down Inventory:

1. Uncertainty in satellite retrievals

OMI filtering error, Air Mass Faction (clod fraction, cloud pressure, NO2 Profile shape, aerosols calculation, Stratospheric corrections, etc)

2. Model Uncertainties

- Error in model metrology
- Model profile shape
- Simulation of fate of Nitrogen emitted into the atmosphere
- (chemical mechanism and heterogeneous aerosol
- NOx reactions)
- dry and wet deposition

Conclusions

Fig. 1. Tropospheric chemistry involving NO_x and impacts of meteorological and chemical parameters evaluated in the present study. Processes shown in solid grey arrows are discussed without sensitivity simulations. Processes shown in dashed grey arrows are not discussed explicitly. Note that PBL mixing and convection affect vertical distributions of NO_x and related species. Heterogeneous uptake on aerosols depends on the amount of aerosol surfaces as well. Evaluation on the RONO₂ pathway is focused mainly on isoprene nitrates. Clouds and water vapor have indirect influences on radicals through effects on solar radiation.

Access to information on emissions: The ECCAD Emissions Database

ECCAD = Emissions of Chemical Compounds and Compilation of Ancillary Data

Goal of ECCAD

Provide access to surface emissions and associated ancillary data to support many projects:

• International projects such as:

GEIA (Global Emission Inventories Activity)
IGAC (International Global Atmospheric Chemistry Project)
CCMI, AEROCOM, , CMIP5/CMIP6, etc.

• European research projects such as:

MACC-II (Monitoring of the Atmospheric Composition and Climate)
PANDA (Forecasting Air Pollution in China)
ChArMEx (The Chemistry-Aerosol Mediterranean Experiment)
ECLIPSE, PEGASOS, PANDA, ACCESS, etc.

Website: pole-ether.fr/eccad

From the ECCAD website

The ECCAD database includes currently a large diversity of datasets, which provide global and regional surface emissions for a large set of chemical compounds. All the data are at a 0.5x0.5 or 1x1 degree resolution. ECCAD provides detailed metadata for each dataset, including information on complete references and methodology, and links to the original inventories. Several tools are available for the visualization of the data, for computing global and regional totals and for an interactive spatial and temporal analysis. The data can be downloaded as NetCDF CF-compliant files.

NetCDF-CF = Climate and Forecast (CF) Metadata Convention See http://cfconventions.org/

ECCAD = Emissions of Atmospheric Compounds and Compilation of Ancillary Data

ECCAD is the GEIA emissions database

REGION	IAL INVENTORIES	(7)				
TNO-MACC-II Europe 2013	2003 - 2009	yearly	Anthropogenic	0.5°	TNO innovation for life	POF
TNO-MACC Europe 2009	2003 - 2007	Yearly	Anthropogenic	0.5°	TNO innovation for life	POF
EMEP Europe 2007	1980 - 2020	Yearly	Anthropogenic	0.5°	Convention on Long-range Transboundary Air Pollution emep	POF
Assamoi-Liousse Africa 2012	2005 - 2030	Decadal	Total	0.5°		POF
India_NOx India 2012	2005	Yearly	Anthropogenic	0.5°		
SAFAR-India India 2012	1991 - 2011	Decadal	Anthropogenic	1°		
REAS Asia 2007	1980 - 2020	Yearly	Anthropogenic	0.5°	$\mathcal{R}_{ ext{EAS}}$	
REGIONAL INVENTORIES DEVELOPED FOR ONGOING PROJECTS (1)						
<u>ChArMEx</u> Mediterranean 2012	2000	Varied	Anthropogenic Biomass burning Biogenic Oceanic Volcanic	0.25/0.5/1°		POF

Many different inventories, including global and regional datasets Only gridded inventories can be inserted currently in the database New version under development (Thanks to EPA)

ightarrow data at any resolution can be included

29

Currently under development: comparisons of maps with algrebraic calculations, scattered plots

ECCAD tools

Temporal variation for a country over a period of time

biogenic_isoprene, total/region : GUESS-ES, USA

http://www.temis.nl/airpollution/no2.html

https://disc.gsfc.nasa.gov/Aura/data-holdings/OMI/omno2_v003.shtml

http://projects.knmi.nl/omi/research/product/product_generator.php?&info=intro&product=l

http://www.tropmet.res.in/emission/

http://eccad.sedoo.fr/eccad_extract_interface/JSF/page_map_instituts.jsf

Estimate Surface PM_{2.5} From Satellite AOD

AOD is related to PM_{2.5}

...but how to separate surface aerosol from column concentrations?

PM_{2.5} / AOD ratio is a function of:

- vertical structure
- aerosol type/hygroscopicity
- meteorology

Multiple approaches:

- surface monitors calibration
- empirical relations
- model output

Approach

satellite-based measurements of *aerosol optical depth* to *PM*_{2.5} using a global/regional chemical transport model

Following Liu et al., 2004:

5N

70E

80E

90E

100E

Estimated $PM_{2.5} = \eta \cdot \tau$

Fig. 7: Estimated $PM_{2.5}$ values for annual and seasonal during the study period.

Fig. 3: Variability of monthly mean satellite derived (red), and observed (black) surface $PM_{2.5}$ (in $\mu g/m^3$) over 15 monitoring locations.

Fig. 4b: Correlation coefficients between observed (monthly mean of 15 stations) and estimated PM_{2.5} concentrations

Fig. 5: Variability in observed and estimated PM_{2.5} concentrations over Delhi, Pune, Jabalpur, Hyderabad and Udaipur

Fig. 6: Correlation coefficients values between observed and Satellite derived PM_{2.5} concentrations over Delhi, Pune, Jabalpur, Hyderabad and Udaipur
Emission Exercise ---- Transportation Sector (Delhi)

Categories of vehicles

- 1. Two stroke two-wheeler (2W2S)
- 2. Four stroke two-wheeler (2W4S)
- 3. Two stroke three-wheeler (3W2S)
- 4. Four stroke three-wheeler (3W4S)
- 5. Four wheeler gasoline (4WG)
- 6. Four wheeler diesel (4WD)
- 7. Heavy Duty Diesel Low sulfur (HDDLS)
- 8. Heavy Duty Diesel High sulfur (HDDHS)

Pollutants for which Emission Factors have been determined

- 1. Carbon dioxide (CO₂)
- 2. Carbon monoxide (CO)
- 3. Oxides of Nitrogen (NO)

Computed Mass Emission Factors for Different Vehicles

Species		2W2S	2W4S	3W2S	3W4S	4WG	4WD	HDDLS	HDDHS
FC	g/km	11.0	9.7	22.1	25.9	84.3	92.7	195.2	195.2
	G/hr	254.9	225.2	511.2	599.8	1576.5	1733.2	3649.9	3649.9
CO_2	g/km	26.6	28.3	60.3	78.5	223.6	208.3	515.1	515.2
	G/hr	617.0	655.6	1397.2	1817.1	4181.3	3896.4	9633.3	9634.8
CO	g/km	2.0	1.4	5.25	2.0	24.8	2.0	4.7	4.7
	G/hr	46.4	33	121.6	46.9	462.9	36.8	88.4	87.4
NO	g/km	0.8	1.4	1.2	2.0	3.3	116.9	354.3	405.3
	G/hr	20.5	32.9	28.1	46.0	62.4	2185.5	6626.6	7579.2

Area of Delhi: 36 km x 36 km

Number of total vehicles : 4.5 million

- 1. Two stroke two-wheeler (2W2S): 10%
- 2. Four stroke two-wheeler (2W4S) : 10%
- 3. Two stroke three-wheeler (3W2S): 15%
- 4. Four stroke three-wheeler (3W4S):5%
- 5. Four wheeler gasoline (4WG): 30%
- 6. Four wheeler diesel (4WD): 10%
- 7. Heavy Duty Diesel Low sulfur (HDDLS): 10%
- 8. Heavy Duty Diesel High sulfur (HDDHS): 10%

25km /day 25km /day 50km /day 50km /day 25km /day 25km /day 10km /day

Calculate total annual emissions from the transportation secto

Challenge: How to measure one compound among many?

CH4		502	CO2	NOx	C6	H6 03	CH4	SO2
		502	CO)	C	0		СО
C5H8	CC	03		CO2	CO2	NOx	N	Ox
	SO2		CH4	SO2	CH4	CH4		CH4
NOx	NOx	03	c	0	Сене		SO2	C5H8
		C6H6	03			SO2	NOx	NOx
CH	4		C5H	18	CH4			
C5	H8	03		N	IOx		SO2	CILA
		со	CH4		CHA	03		CH4

Category	Parameters	Instruments		
Ground and surface properties	Temperature and water profile in the ground Ground heat flux	Soil moisture sensors		
Surface layer meteorology	Temperature, humidity, pressure, wind speed, wind direction at1m, 2m, 5m, 10m, turbulence and precipitation	All in one whether station, 10m vertical mast, IMD-SAFAR AWS network, sonic anemometers		
Radiation fluxes	Downwelling shortwave (SW) direct, diffuse, and global long wave (LW) irradiance	Sky Radiometer, Net radiometer, pyranometers		
Atmospheric profiles	Temperature, humidity, pressure, wind speed, wind direction	Microwave radiometer, Tethersonde instruments, Radio-sonde (IMD)		
Aerosols and fog optical properties	Visibility, fog and cloud base height, absorption coefficient, scattering coefficient, aerosol optical depth	RVR, fog detector, Photoacoustic Extinctiometer (PAX- aerosol absorption and scattering), Neflometer, sun-photometers, Aethalometer		
Aerosols and fog microphysics	Aerosol particle size distribution, aerosol particle counter, Condensation Particle Counter/ Condensation droplet counter, CCN	SMPS, CPC/CDP, CCN counter, GRIMM		
Aerosol/gas chemistry	Fog collector, Particle in Liquid Sampler (PILS), EC/OC analyser, VOCs, Aérosol filter collector, SO ₂ gas analyzer , PM_1 , $PM_{2.5}$, PM_{10}	Fog Collector, PILS, PTRMS EC/OC anayzer, SO ₂ analyzer, PM analyzers		

In brief, tropospheric NO2 column is derived in three main steps involving the calculation of

(1) slant column (using Differential Optical Absorption Spectroscopy (DOAS) approach in the 405–465 nm spectral window),

(2) tropospheric slant column (using modeling/ assimilation approach),

(3) tropospheric vertical column (using air mass factor—AMF).

