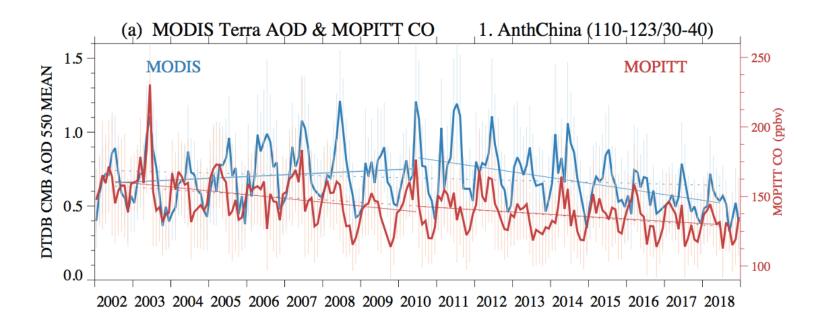


Comparison of CO emission reduction estimates during lockdown periods

Benjamin Gaubert

Simone Tilmes, Louisa Emmons, Forrest Lacey, Helen Worden, Wenfu Tang, Rebecca Buchholz, Idir Bouarar, Thierno Doumbia, Yiming Liu, Trissevgeni Stavrakou, Adrien Deroubaix, Sabine Darras, Nellie Elguindi, Claire Granier, Jean-François Müller, Xiaoqin Shi, Tao Wang, Guy P. Brasseur

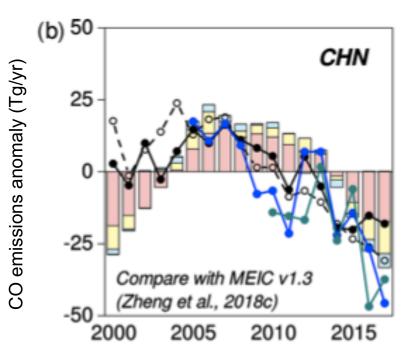


Tuesday 3 November 2020

The satellite perspective

NCAR

Buchholz et al., Air pollution trends measured from Terra: CO and AOD over industrial, fire-prone, and background regions


- Observed decrease in CO in the NH with consistent trends between satellite instruments
- Reduction of 1 %.yr⁻¹ for Northern China

The satellite perspective & Emission trends

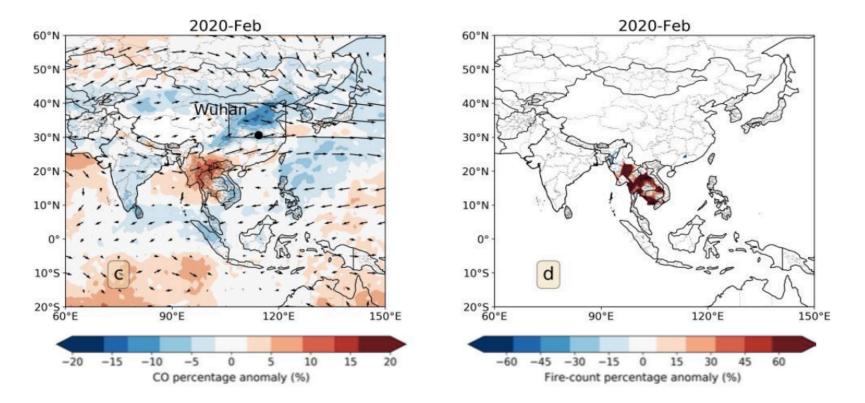
- > Decreasing trend in CO emissions
- Northern hemisphere and in China
- Agreements and recent convergence between top down and bottom-up estimates
- Improvements in
- 1. combustion efficiency following economic development
- 2. industrial processes, recycling of industrial coal gases
- 3. vehicle emission standards

Tang et al. (2019); Satellite data reveal a common combustion emission pathway for major cities in China Li et al., (2017); Anthropogenic emission inventories in China: a review Zheng et al. (2019) Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions Elguindi et al. 2020: Intercomparison of Magnitudes and Trends in Anthropogenic Surface Emissions From Bottom-Up Inventories, Top-Down Estimates, and Emission Scenarios

The satellite perspective

NCAR

- ➢ Filonchyk et al., Aerosol and Air Quality Research, 20: 1530–1540, 2020.
 - Found a lower CO in than 2020 than 2019 using the NASA Atmospheric Infrared Sounder (AIRS) CO at 400 hPa
 - * Higher CO found in the southern China
- > Fan et al., *Remote Sens*, *12*, 1613; doi:10.3390/rs12101613, 2020.
 - ✤ Use TROPOMI CO and found small differences between 2020 and 2019, within +/- 20 %
 - ✤ From the comparison of surface observations across cities, they found little variation "no substantial decrease in 2020".
- > Field et al., Atmos. Chem. Phys. Discuss., 10.5194/acp-2020-567, 2020.
 - Looked at AIRS at 500 hPa and found that CO in 2020 was 12% lower than the 2005-2019 mean, but only 2% lower than what would be expected given the decreasing CO trend over that period.


The satellite perspective

- > Metya et al., Aerosol and Air Quality Research, 20: 1772–1782, 2020
- Used AIRS CO at 700, and detrend the CO using a climatology (2010–2020) for each month (January– February–March)

Positive anomalies are associated with fire activities that mask the actual lockdown in Vietnam.

Small (~5 %) but significant decrease CO in northern China

NCAR

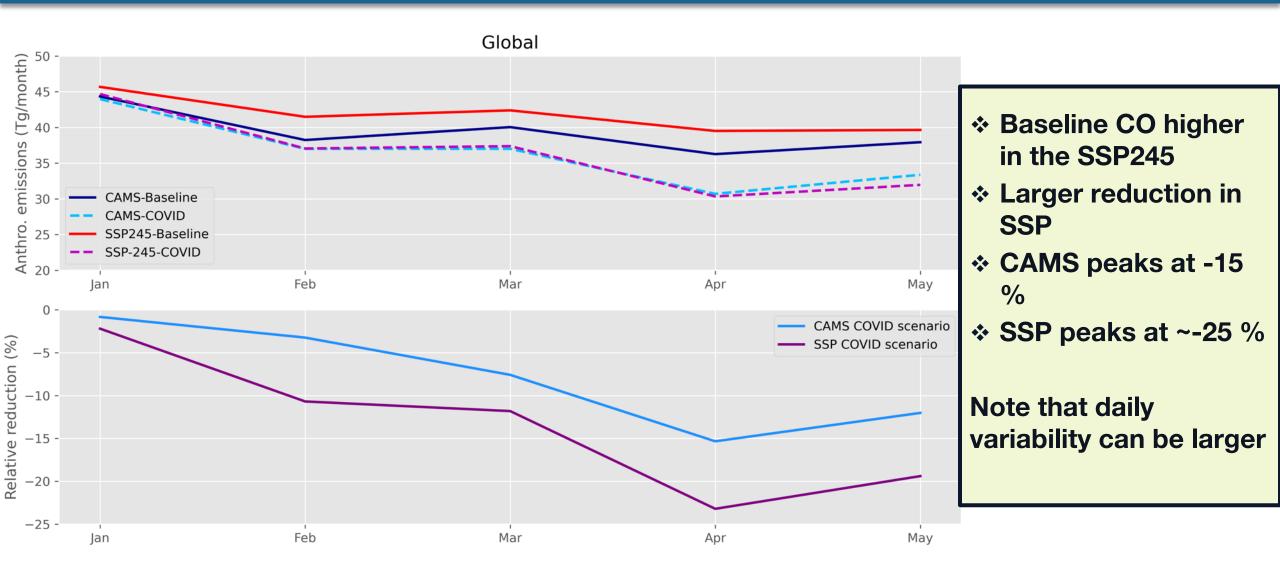
Changes observed from Air Quality network

		Reference period	2020 change (%)	References
	Wuhan	Jan. 23–Feb. 23	-22.7	Lian et al.; Shi and Brasseur (2020) Xu et al., Aerosol Air Qual. Res. (2020)
 Overall reduction of CO in Chinese cities. 	Anqing, Hefei, and Suzhou	Jan. 2017-2019	-16.7	
		Feb. 2017-2019	-36.2	
		Mar. 2017-2019	-24.2	
 Lian et al. (2020) suggest than the reduction for CO in Wuhan was mainly driven by the transportation sector. 	Shanghai and YRD	10 January-23 January 24 January	0 (2017); +2.3 (2018); -7.6 (2019)	Filonchyk and Peterson, J geovis spat anal. (2020)
		24 January–6 February	-16.8 (2017); -24.8 (2018); -3.0 (2019)	
		7 February-20 February 21 February–6 March	-36.5 (2017); -14.1 (2018); +4.7 (2019)	
			-38.1 (2017); +4.8 (2018); -45.1 (2019)	
		24 Jan - 25 Feb 2019	-7.8	Li et al., Science of the Total Environment, 2020
		26 Feb 31 Mar. 2019	-25.9	

Adapted from Anil and Alagha (2020)

Changes in emissions

Current and future global climate impacts resulting from COVID-19


Piers M. Forster[®]¹[⊠], Harriet I. Forster², Mat J. Evans^{® 3,4}, Matthew J. Gidden^{5,6}, Chris D. Jones[®]⁷, Christoph A. Keller^{8,9}, Robin D. Lamboll^{® 10}, Corinne Le Quéré^{® 11,12}, Joeri Rogelj^{® 6,10}, Deborah Rosen¹, Carl-Friedrich Schleussner^{® 5,13}, Thomas B. Richardson¹, Christopher J. Smith^{® 1,6} and Steven T. Turnock^{® 1,7}

- Baseline defined as a central estimate of emissions pathways
- Chemicals based on the 2015 emissions in the EDGAR database
- Apply COVID related emissions reduction by sector and on a daily basis based on ancillary data (e.g. Google mobility data)

- Doumbia et al. (to be submitted to ESSD), another estimate of lockdown induced change in emissions.
- Approach is similar to Forster et al.,
 0.1x0.1 latitude/longitude degree grid
- Applied to CAMS (Version v4.2-R1.1), includes the MEIC v1.3 emissions in China
- Baseline emissions are calculated for the year 2020.
- daily emissions interpolated from monthly means

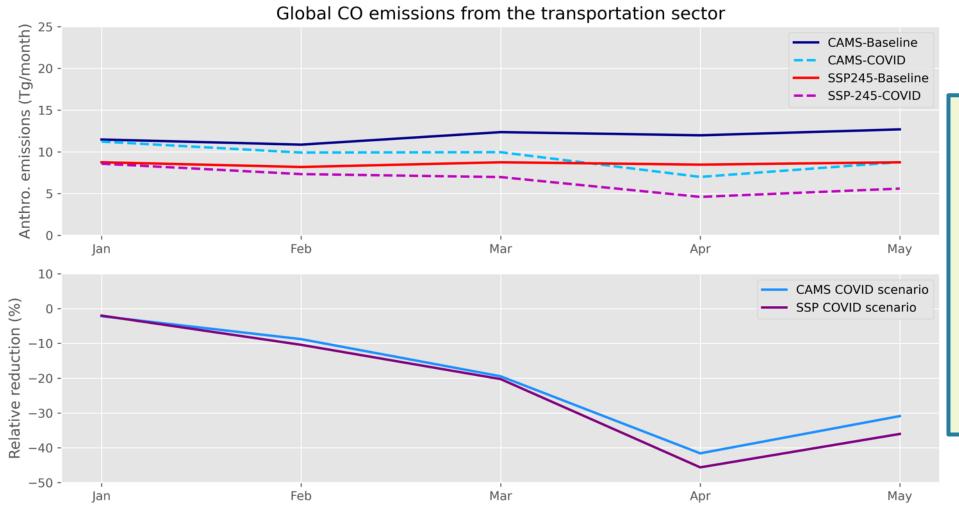
Comparison of anthropogenic CO emission inventories

IGAC/AMIGO workshop: Changes in Atmospheric Composition During the COVID-19 Lockdowns

NCAR

UCAR

Anthropogenic CO emission inventories, by sectors, *Industry*

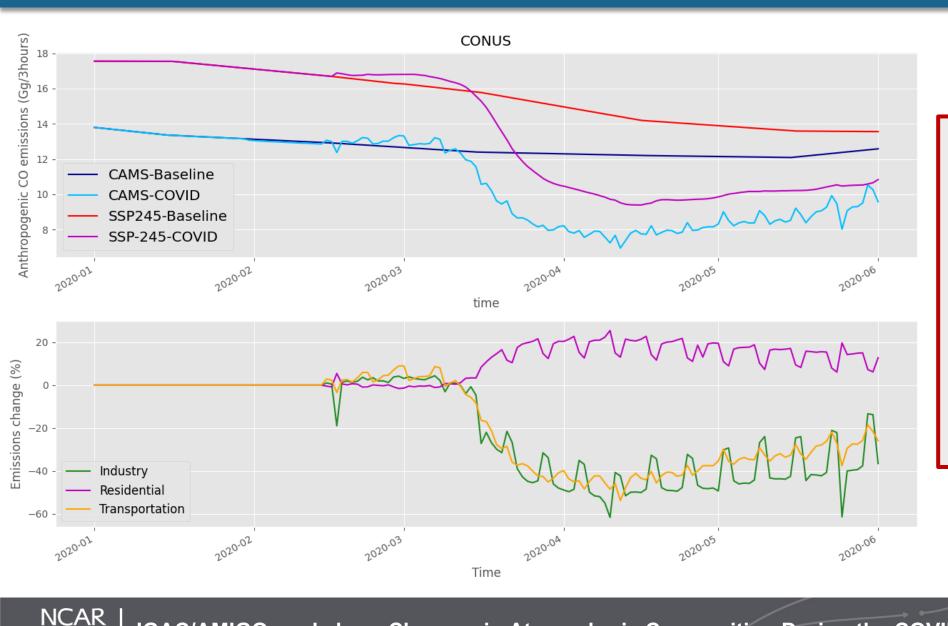

Global CO emissions from the industry sector 25 Anthro. emissions (Tg/month) **CAMS-Baseline** CAMS-COVID 20 SSP245-Baseline SSP-245-COVID 15 * Larger changes in 10 China (Feb) in SSP 5 -Soth agree very 0 well for April (30 %) Feb May Jan Mar Apr 0 Reference CAMS COVID scenario Relative reduction (%) SSP COVID scenario emission values -10larger than -20 scenarios -30 -40lan Feb May Mar Apr

IGAC/AMIGO workshop: Changes in Atmospheric Composition During the COVID-19 Lockdowns

NCAR

UCAR

Anthropogenic CO emission inventories, by sectors, Transportation

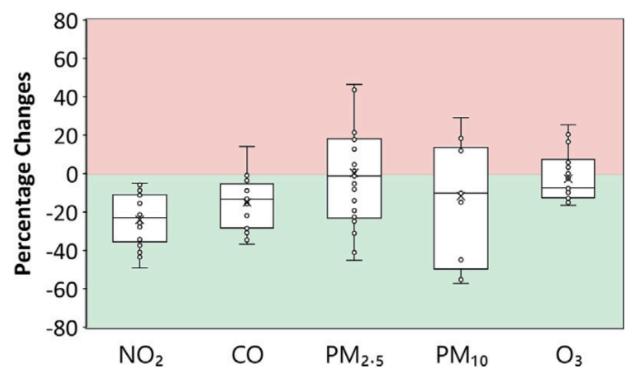


NCAR

UCAR

- Larger CO emissions from transportation in CAMS
- Good agreement in lockdown induced change
- ~40 % in monthly totals for April 2020

Anthropogenic CO emission inventories, CONUS


UCAR

- Offset in baseline emissions can be as large as the reduction
- Disentangle the sector contributions

Global lockdown

UCAR

Chen et al. (2020): Consistent NO2 and CO declines corroborate with low transportation/utility demands.

COVID-19 Impact on Air Quality in U.S.

An assessment of the impact of a nation-wide lockdown on air pollution - a remote sensing perspective over

India

Mahesh Pathakoti¹, Aarathi Muppalla², Sayan Hazra³, Mahalakshmi Dangeti¹, Raja Shekhar², Srinivasulu Jella¹, Sesha Sai Mullapudi¹, Prasad Andugulapati², and Uma Vijayasundaram³

¹Analytics and Modelling Division; Land and Atmospheric Physics Division; Earth and Climate Sciences Area, National Remote Sensing Centre (NRSC), Indian Space Research Organization (ISRO), Hyderabad-500037, India

²Bhuvan Project Management and Software Evaluation Division, Bhuvan Geoportal and Data Dissemination Area, NRSC, ISRO, Hyderabad-500037, India

³Department of Computer Science, School of Engineering & Technology, Pondicherry University, Chinna Kalapet, Kalapet, Puducherry-605014, India

Pathakoti et al. (2020): An increase in CO levels was noticeable, probably due to its longer life-time as compared to NO_2 and aerosols. This study also reports the rate of change of NO₂, CO and AOD, indicating increase/decrease in pollutant emissions over the different states of India.

NCAR IGAC/AMIGO workshop: Changes in Atmospheric Composition During the COVID-19 Lockdowns

Review status

A revised version of this preprint is currently under review for the journal ACP.

Conclusions

- Surface Air Quality networks are more sensitive to emission changes than satellite observations
- Disentangle effects from secondary CO, natural sources from biogenic and biomass burning
- Response to emissions perturbations is non linear and chemical feedback should be investigated

Perspectives:

NCAR

- Different prior emission dataset and lockdown scenarios should be considered for inversion studies
- ***** Correlative measurements (CO, AOD...) in multi-species inversion framework
- * Comparison of top-down and bottom-up inversions