Mary C Barth¹, Barbara Ervens², Hartmut Herrmann³, Andreas Tilgner³, V Faye McNeill⁴, Ann Marie Carlton⁵, Sara Lance⁶, Mauro Morichetti⁷, Laurent Deguillaume⁸, and Nadine Chaumerliac⁸

¹National Center for Atmospheric Research, Boulder, CO, United States, ³Leibniz Institute for Tropospheric Research, Leipzig, Germany, ⁴Columbia University of New York, Palisades, NY, United States, ³Leibniz Institute for Tropospheric Research, Leipzig, Germany, ⁴Columbia University of New York, Palisades, NY, United States, ³Leibniz Institute for Tropospheric Research, Leipzig, Germany, ⁴Columbia University of New York, Palisades, NY, United States, ³Leibniz Institute for Research, Leipzig, Germany, ⁴Columbia University of New York, Palisades, NY, United States, ³Leibniz Institute for Tropospheric Research, Leipzig, Germany, ⁴Columbia University of New York, Palisades, NY, United States, ³Leibniz Institute for Tropospheric Research, Leipzig, Germany, ⁴Columbia University of New York, Palisades, NY, United States, ³Leibniz Institute for Tropospheric Research, Leipzig, Germany, ⁴Columbia University of New York, Palisades, NY, United States, ³Leibniz Institute for Tropospheric Research, Leipzig, Germany, ⁴Columbia University of New York, Palisades, NY, United States, ³Leibniz Institute for Tropospheric Research, Leipzig, Germany, ⁴Columbia University of New York, Palisades, NY, United States, ³Leibniz Institute for Tropospheric Research, Leipzig, Germany, ⁴Columbia University of New York, Palisades, NY, United States, ³Leibniz Institute for Tropospheric Research, Leipzig, Germany, ⁴Columbia University of New York, Palisades, NY, United States, ³Leibniz Institute for Tropospheric Research, Leipzig, Germany, ⁴Columbia University of New York, Palisades, NY, United States, ³Leibniz Institute for Tropospheric Research, Leipzig, Germany, ⁴Columbia University of New York, Palisades, NY, United States, ³Leibniz Institute for Tropospheric Research, ³Leibniz Institute for Tropo ⁵University of California Irvine, CA, United States, ⁶University of Polytechnic of Marche, Ancona, Italy, ⁸Laboratoire de Météorologie Physique (LaMP), Clermont-Ferrand, France

Effects of Clouds on Tropospheric Composition

- Acid rain studies from the 1980s and 1990s identified importance of aqueous-phase chemistry in producing sulfate
- Clouds affect ozone via aqueous chemistry, scattering of radiation, and lightning-NO_x production
- Cloud chemistry can produce more secondary organic aerosols

- Three-dimensional chemistry transport models often do not include aqueous-phase chemistry due to lack of complete understanding of the chemistry and the computational burden
- Goal: Evaluate the current state of knowledge in multiphase chemistry box models

Background

- Intercomparison is being conducted in the context of the Whiteface Mountain Cloud Chemistry Study
- Cloud event of 17-19 September 2016 is being analyzed for its composition by several groups
- In this study we model the first 20 hours of the cloud event using meteorological conditions at Whiteface Mountain

Meteorology of the Case Simulated

Clouds associated with warm front and warm sector storms/clouds

- Initial concentrations are from a WRF-Chem simulation of 16-19 September 2016 continental United States
- Photolysis rates from TUV v5.3 for WFM in September, for clear sky with some aerosols
- CCN composed of SO₄, NH₄, Organic Carbon
- Cloud drops set to 10 μm radius

Thanks to William Gang Tsui for his contribution to McNeill's simulations. Thanks to NCAR/ACOM for supporting cloud chemistry modeling intercomparison meeting. NCAR is supported by the National Science Foundation.

Intercomparison of Chemical Multiphase Box Models

		Gas chemistry	Aqueous chemistry	Gas-liquid transfer	Reference
	TROPOS (Tilgner, Herrmann)	MCMv3.2 13,927 reactions	CAPRAM4.0α 7129 reactions	275 species	Tilgner et al. (2013 Atmos. Chem.)
	Deguillaume	MCMv3.3.1 2043 reactions	CLEPS 850 reactions	591 species	Mouchel-Vallon et (2017, GMD)
	McNeill	Isoprene, aromatics, and C1- C3 photochemistry 165 reactions	GAMMA 239 reactions	35 species	McNeill et al. (201 ES&T)
	Barth	Similar to MOZART4 168 reactions	45 reactions	45 species	Li et al. (2017, JGR
	Ervens	Similar to Barth's 168 reactions	Ervens 58 reactions	22 species	Ervens et al. (2014 JGR; 2008, GRL)

