

Asian summer monsoon Chemical and Climate Impact Project (ACCLIP)

Principal Investigators:

Co-Investigators:

Laura Pan

NCAR Atmos. Chem. Obs. & Modeling Laboratory Paul Newman

NASA Goddard Space Flight Center

Elliot Atlas

Department of Atmospheric Sciences RSMAS, U. of Miami

Owen Brian Toon

Department of Atmospheric and Oceanic Sciences LASP, U. of Colorado

William Randel

NCAR Atmos. Chem. Obs. & Modeling Laboratory

Asian summer monsoon Chemical and Climate Impact Project (ACCLIP): the NASA WB-57f

NASA Program Scientist: Ken Jucks Project Scientist: Paul A. Newman Deputy PS: Troy Thornberry Project Manager: Jhony Zavaleta

ACCLIP

- Period: July-August, 2020
- Deployment Site: Naha, Okinawa, Japan
- Aircraft:
 - NSF/NCAR research aircraft Gulfstream V (GV) – July 15 to August 31
 - NASA WB-57f August 3 to 27
- Objective: Characterize the Asian summer monsoon's impact on global chemistry and climate.

ACCLIP Deployment & FIRs

Duration:

6 hours **Useful Payload:** 9,700 lbs **Gross Take-off Weight:** 72,000 lbs **Onboard Operators:** 2 (Pilot and SEO) Max Altitude: 60 kft + Air Speed: 410 knots (211 m/s) **Range:** 2,500 Nmi (4630 km) **Power:** 110V/60Hz AC Nose

14 wing

hatches

Super pod

Spear pod

110V/400Hz AC 28 VDC ACCLIP - 2020 Asian Summer Monsoon Chemistry and Climate Impacts Project

NASA WB-57f

NASA Johnson Space Center Ellington Field

Tail cone

Power: 110V/60Hz AC 110V/400Hz AC 28 VDC

Asian Summer Monsoon

HCN time average mixing ratio (ppbv) near 13.5 km during boreal summer (June to August) derived from ACE-FTS observations. Arrows denote winds, & show that the HCN maximum is linked with the upper tropospheric Asian monsoon anticyclone.

HCN time and zonal average mixing ratio (ppbv) during boreal summer (June to August) from ACE-FTS. Tropopause is the white dashed line, and black lines are isentropes.

Randel et al. (2010)

Left Spear Pod Cloud Probes

ACCLIP - 2020 Asian Summer Monsoon Chemistry and Climate Impacts Project

ACCLIP ACCLIP ACCLIP ACCLIP ACCLIP ACCLIP

Left Super Pod Lidar (Roscoe)

Nose PALMS, MMS

Right Super Pod

Right Wing Hatch/Spear Pod

<u>Tail</u> ChiWIS?

Pallet Bay FT – MMS electronics 1 – UTLS-AMP, SP2 2 – LIF-SO₂, LIF-NO 3 – ISAF, Ames-LGR 4 – WAS, COLD2 AT – UASO3

Flight planning

- Flight planning is dictated by operational constraints that include WX at Naha, FIR restrictions, ATC controls, crew limitations, and available targets
- G-V covers lower altitudes (up to mid-40s), while 57 covers 43-60 kft
- WB-57f cross-wind limit of 15 kts

Flight objective: characterize anticyclone's core chem. & part. composition

Flight objective: characterize anticyclone's core chem. & part. composition

2018-08-24T05:00 UTC

RH (%)

Flight objective: characterize anticyclone's cross-gradient structure

Flight objective: characterize anticyclone's cross-gradient structure

2018-08-24T05:00 UTC

WIND (m/s)

Flight objective: characterize anticyclone's cross-gradient structure

2018-08-24T05:00 UTC at 150.0 HPa

<u>Approach 2</u> - Determine How Well Radiative Transfer Models Perform in Simulating Optically-Thin Cirrus Cloud Forcing Properties

U.S.NAVAL

RESEARCH

The Climatic Significance of Optically-Thin Cirrus Clouds – Base Program FY17 Divisional Briefing | 14

U.S. Naval Research Laboratory

REThinC Instrument Placement on WB-57

U.S. NAVAL RESEARCH

SPEC 2D-S, FCDP and CPI in Right Spear Pod

