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Aircraft field campaigns in air quality research

Aircraft field measurements deliver:
« High resolution 3-D picture of tracer distributions and the state of the atmosphere

* Air mass evolution

» Vertical profiles to provide link with satellite and
other remote sensing data

» Large payloads can include measurements of primary and secondary pollutants,
including intermediates

» A key tool for model evaluation
« Evaluate emissions
« ldentify source contributions
» Measure chemistry and physical transformations
« Aircraft data can be used for ground monitor evaluation
» Provide validation for existing ground monitoring network
* Provide input for optimal monitor placement



Aircraft field campaigns in air quality research

Aircraft fleld measurements do NOT deliver:
* Long term monitoring
» Typically weak statistics
« Smaller point source characterization
* Require simultaneous ground measurements

« Measurements very close to the ground (in populated areas and
complex terrain)
However, missed approaches can help with this in select areas

Satellites and long-term ground sites
complement aircraft campaigns




Comparing models with observations - 1

» Average observations over a region
(hope/assume fairly uniform, representative) and
compare to model averaged over same region
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Figure 1. Map showing regions for which vertical profiles were compared. Regions are identified
in Table 3. Circles show locations of ozonesondes (discussed in section 4.1).
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Figure 9. CO profiles for regions influenced by biomass burning.

Emmons et al., JGR, 2000
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Regional averages still used

« Standard CAM-chem evaluation diagnostics

TRACE—P_P3, Feb./Apr. 2001 Lat:10—30, Lon:110—130 TRACE—P_DCS8, Feb./Apr. 2001 Lat:10-30, Lon:190-210
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Comparing models with observations - 2

» Average observations to model grid

Gridding observations is really only
reasonable if the observations are
representative of the whole box:
* Full coverage of box
* Representative sample of a uniform
distribution

0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100. 150. ppbv

Plate 1. O3 data composites for 2-4 km (top four panels) and 6-8 km (bottom four panels).
The observations are sorted into four seasons.

Emmons et al., JGR, 2000



Comparing models with observations - 3

* Interpolate models (horizontal, vertical, time) to
flight tracks
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And then bin both
observations and model-
along-flight-tracks by
altitude

Still need to choose small
regions and short times to
make meaningful
comparisons
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In Summer, DC-8 flights
over Canada and the
Arctic sampled local
fires in Saskatchewan,
as well as remote fires
in Asia.




Plumes

* Very challenging to use isolated observed plumes for direct
model evaluation

* Model resolution (horiz.&vert.) dilutes plume

* Model transport may have plume at different altitude
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Model vs observed ozone for fire-dominated period
ARCTAS DC-8 observations over Alaska April 2008
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25-d lifetime model source tracers allow us to
separately evaluate models in air most influenced by

fires.

ARCTAS-A DC-8 Apr 12,16,17 (3-9km, >50N)



Model AO; / ACO relationships (July)

25-d lifetime model source tracers allow us to separately evaluate
models in air most influenced by fires.

Models
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PAN vs CO - great variety among models
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Figure 7. July 2008 PAN/CO relationships for POLMIP models coloured by fire influence.
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Enhancement Ratios
from ARCTAS observations in fire plumes
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FINN QO emissions Jun 28-Ju| 5

Compare ARCTAS VOC/CO correlations to B r |
Emission Ratios Nk TR

ARCTAS-B DC-8 June 29-July 5
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Modeled VOC/CO correlations compared to fire emissions and observations

8-10*

POLMIP models: Saskatchewan Fires - June 29-July 4 (surface-850 hPa)
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Modeled ratios match emissions for NMHCs, but not species also produced chemically
C,H, fire emissions slightly high, propane too low, ethanol much too low
Modeled acetone low — due to chemistry or emissions? or both?



POLMIP: Artificial 25-day tracers with CO emissions from 3 regions
Allow comparison of purely dynamics between the models, without chemistry
Averages over 66-90°N, for each season, over 3 altitude bands
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CAM-chem (FINN & QFED)
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CAM-chem (FINNv1.5 & AG fire) — Sep 2013
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Consider during breakout sessions

« Which science questions can be addressed with existing aircraft
data? and in combination with models?

« What are the limitations of existing data that can be improved in
future field campaigns (sampling strategies, compounds
measured, ...)?

e Other issues ... 7?7



