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Modeling Atmospheric Chemistry

Solve continuity equation for chemical mixing ratios C(x, t)
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Sub-grid Processes in Gas/Aerosol Transport

Model top 3D Eulerian grid box
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Issues in global models

* Numerical diffusion

* Injection height

* Nonlinear chemistry

« Missing chemical compounds
* Other issues



Fire plume is a sub-grid process




1. Numerical diffusion and stretching




Numerical diffusion # molecular diffusion

Real diffusion is molecular Model diffusion occurs
through turbulent cascade through discretization error



Flow stretching enhances numeric diffusion
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Solution: Increase horizontal resolution does NOT help much.
(Eastham et al., 2017, ACP; Rastigejev et al., 2010, JGR)



2. Injection heights of fire plumes

pyrocumulonimbus cloud
in southern Colorado

Most global models use fixed injection
heights for biomass burning emissions,
either in surface layer, boundary layer or a
certain fraction into free troposphere.




Fire injection heights derived from satellite observations
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Model plumes biased low due to average elevation




Different heights lead to different chemistry
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(Williamson et al., 2016, ERL)



Different heights lead to different chemistry

1. PAN is far more stable in free troposphere
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Different heights lead to different chemistry

2. Yield of Alkyl nitrate is significantly higher at lower temperature.
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None of the global models accounts for the temperature-dependence of

alkyl nitrate yields.

(Lee et al., 2014, ACP)



Solution

Computing injection height on-line with fire radiative power (val Martin et
al., 2012, JGR; Veira et al., 2015, ACP)???7?
« Several studies suggest that fire radiative power may not be a
good indicator (peak during smoldering Wooster et al., 2011,
ACP)
» Fire radiative power may be decoupled from plume rise
(Peterson, et al., 2015, BAMS).

Need better chemical kinetics at low temperature.



3. Nonlinear chemistry

Instant dilution in global models
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Emission fluxes in models will be evenly distributed in a gridbox, leading to different

ozone production rate.



Solution

» Look up table to map from plume chemistry to gridbox chemistry .
» Adaptive grids

* Plume in grid (CMAQ, CAMXx)
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Evolution: look-up tables for GEOS-Chem

3 hr downwind, T = 290 K, SZA = 30°
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Courtesy: Matthew Alvarado and Chantelle Lonsdale, Atmospheric Environmental Research



4. Missing compounds in current models
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* Recent papers suggest model underestimates organic compounds by a factor of 2-3.
* Most of these compounds are not accounted for in global models.

(Gilman et al., ACP, 2015; Akagi et al., 2011, ACP)



Consequence of missing organic compounds

« Underestimate of CO from biomass burning plumes.

« Underestimate of PAN and other organic nitrates produced from
plumes.
> Alvarado et al. (2010) treats fire NOx emissions 40% as PAN.
» Miscalculation of ozone production.

(b) APAN/ACO, vs Smoke Age
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(Alvarado et al., 2015, ACP)



PAN (pptv)

Ag-fire smoke plume evolution cloud-free
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Ozone production is still unclear

dO,/dCO has been used to quantify ozone production from fire plumes.

Measured dO3/dCO varies from -0.1 to 0.9 from different studies [Jaffe et al.,

2012].
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Solution

Species currently emitted by biomass burning in standard GEOS-
Chem:

CO2, CO, CH4, NO, SO2, OC, BC, NH3, ACET, ALD2, ALK4, BENZ,
C2H2, C2H4, C2H6, C3H8, CH2BR2, CH20, CH3BR, GLYC, GLYX,
HAC, MEK, MGLY, PRPE, TOLU, XYLE

Box model would be a great tool to lump these species into global
models (John Orlando’s talk).



Other issues

Fire detection

Diurnal cycle of fire emissions

Courtesy of Bob Yokelson



MODIS 1 km resolution
ACTIVE FIRE DETECTION
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Emissions: “Diurnal cycle”
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Nighttime emissions can account for up to 44% of total emissions (Saide et al., 2015)
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Summary

Many issues for modeling fire plumes....
Need field observations to validate models (Louisa’s talk).

Need engineering approach to get something right (emit NO, as
PAN??7?)



How do wildfires impact global OH/ozone?



The impact of biomass burning emissions on oxidants and radiative forcing
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IPCC AR4 only estimates the direct forcing from biomass burning

aerosols (+0.03 £0.12 W m-2).



Perturbation tests of biomass burning emissions on global OH and ozone
AM3 model with different magnitude of biomass burning emissions (for year 2000).
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How a pyrocumulus cloud forms

Unstable fire conditions — dry fuel, high heat, low humidity
and stiff wind — create the recipe for a pyrocumulus cloud.

2. As the fire heats
the air, it whirls
upward carrying

smoke and water
1. As temperatures climb and fuels are stoked vapor as it rises,
by wind, a column of hot air begins to rise. creating the cloud.

The fire, craving oxygen, sucks in cool air.

\ R
sf’“r'('\\\l\ o) T

Jason Lantz / kiaho Statesman



