Modeling Fire Emissions Christine Wiedinmyer

What do you need to know?

- Where and When?
 - Where is the fire happening? When?

Global Fire Activity

- Wildfires
- Prescribed Burning
- Agricultural Burning
- Land clearing

Bowman et al., Science, 2009

What do you need to know?

- Where and When?
 - Where is the fire happening? When?
- What?
 - What is burning?

What is burning?

Consolidated Rock Sparse Vegetation Cropland Cropland and Shrubland/woodland Herbaceous Wetlands Polar Grassland with a Dwarf-Sparse Shrub Layer Polar Grassland with a Sparse Shrub Layer Snow and Ice Subpolar Needleleaved Evergreen Forest Open Canopy Temperate or Sub-polar Broadleaved Deciduous Forest Temperate or Sub-polar Mixed Broaddleleaved or Needleleaved Forest Temperate or Sub-polar Mixed Broadleaved and Needleleaved Dwarf-Shruble Temperate or Sub-polar Mixed Broadleaved or Needleleaved Forest Temperate or Sub-polar Needleleaved Evergreen Forest Temperate or Sub-polar Needleleaved Evergreen Forest Temperate or Sub-polar Needleleaved Mixed Forest Temperate or Subpolar Broadleaved Deciduous Shrubland Temperate or Subpolar Broadleaved Evergreen Shrubland Temperate or Subpolar Grassland Temperate or Subpolar Grassland with a Sparse Shrub Layer Temperate or Subpolar Grassland with a Sparse Tree Layer Temperate or Subpolar Needleleaved Evergreen Shrubland Tropical or Sub-tropical Broadleaved Deciduous Forest Tropical or Sub-tropical Broadleaved Evergreen Forest Tropical or Sub-tropical Broadleaved Evergreen Forest Unconsolidated Material Sparse Vegetation (old burnt or other disturbance) Urban and Built-up Vater bodies Wetlands

 $Emissions_i = f(A(x,t), B(x,t), E_{f_i})$

A(x,t): Area burned

B(x,t): Biomass burned (biomass burned/area)

- type of vegetation (ecology)
- fuel characteristics:
 - amounts of woody biomass, leaf biomass, litter, ...
- fuel condition
 - moisture content

E_{fi}: Emission factor (mass emission_i /biomass burned)

- fuel characteristics
- fuel condition

Applications for Open Burning Emissions

Climate modeling

• Carbon/ecosystem dynamics

• Air quality/weather

• Emission inventories

Application determines area of study, temporal and spatial resolution needed, and emissions needed

Estimating Emissions

- Based on laboratory and field measurements
- Dependent on measurement techniques
- Function of type of burning

Montana Fire Sciences Laboratory (B. Yokelson)

(1) Emissions determined from field measurements

Thomas Karl, NCAR TROFFEE Study, Brazil

Deforestation Fire in the Yucatan, Mexico (March 2006) Bob Yokelson, UMT

http://www.umt.edu/chemistry/faculty/yokelson.htm

Emission Ratios

Example: CH₃Cl

$$\mathrm{ER}_{\mathrm{CH}_{3}\mathrm{Cl/CO}} = \frac{\Delta \mathrm{CH}_{3}\mathrm{Cl}}{\Delta \mathrm{CO}} = \frac{(\mathrm{CH}_{3}\mathrm{Cl})_{\mathrm{smoke}} - (\mathrm{CH}_{3}\mathrm{Cl})_{\mathrm{ambient}}}{(\mathrm{CO})_{\mathrm{smoke}} - (\mathrm{CO})_{\mathrm{ambient}}}$$

Andreae and Merlet, Global Biogeochemical Cycles, 2001

Measurements \rightarrow Models

$$\mathrm{EF}_{x} = \mathrm{ER}_{(X/Y)} \, \frac{\mathrm{MW}_{X}}{\mathrm{MW}_{Y}} \mathrm{EF}_{Y},$$

- EF_x Emission factor for species X
- $ER_{(X/Y)}$ Emission ratio of species X relative to the reference species Y
- MW_x Molecular weight of species X
- MW_Y Molecular weight of species Y
- EF_Y Emission factor of species Y

Andreae and Merlet, *Global Biogeochemical Cycles*, 2001

(2) Fire emissionsdetermined fromlaboratory experiments

A schematic of the USFS Fire Sciences Laboratory (FSL) combustion facility in Missoula, MT.

http://www.umt.edu/chemistry/faculty/yokelson.htm

Getting at Emission Factors...

$$E F_x = \frac{M_x}{M_{\text{biomass}}} = \frac{M_x}{M_C} [C]_{\text{biomass}}$$

$$\mathrm{EF}_{x} \cong \frac{[x]}{\sum ([C_{\mathrm{CO}_{2}}] + [C_{\mathrm{CO}}] + [C_{\mathrm{CH}_{4}}] + [C_{\mathrm{VOC}}] + [C_{\mathrm{aeros}}] + \dots)} [C]_{\mathrm{biomass}},$$

M_x M_{biomass} M_c [C]_{biomass} [x] [C_i] Amount of compound released
Amount of biomass burned
Mass of carbon emitted
Carbon concentration in biomass burned (45%)
Concentration of species x in the smoke
Concentration of species i in the smoke

Andreae and Merlet, *Global Biogeochemical Cycles*, 2001

Emission factors for open and domestic biomass burning for use in atmospheric models

S. K. Akagi¹, R. J. Yokelson¹, C. Wiedinmyer², M. J. Alvarado³, J. S. Reid⁴, T. Karl², J. D. Crounse⁵, and P. O. Wennberg⁶

Atmos. Chem. Phys., 11, 4039–4072, 2011 www.atmos-chem-phys.net/11/4039/2011/ doi:10.5194/acp-11-4039-2011

> Published 2011 2015 Update at: http://bai.acd.ucar.edu/Data/fire/

Fire Emissions

Not just one thing emitted

Many different compounds

Some hazardous air pollutants

Numerous impacts on air quality and climate

Carbon Dioxide (CO₂) Methane (CH₄) Hydrogen (H₂) Carbon Monoxide (CO) Acetylene (C₂H₂) Ethylene (C_2H_4) Ethane (C_2H_6) Propadiene (C_3H_4) Propylene (C_3H_6) Propane (C_3H_8) 1-Butene (C_4H_8) 1,3 Butadiene (C₄H₆) *trans*-2-Butene (C₄H₈) *n*-Butane (C₄H₁₀) *i*-Butane (C₄H₁₀) *trans*-2-Pentene (C₅H₁₀) *cis*-2-Pentene (C₅H₁₀) *n*-Pentane (C_5H_{12}) *i*-Pentane (C₅H₁₂) 3-Methyl-1-Butene (C₅H₁₀) Isoprene (C₅H₈) Cyclopentane (C₅H₁₀)

2-Methyl-1-Pentene (C₆H₁₂) Nitric Oxide (NO) Nitrogen Dioxide (NO₂) n-Hexane (C₆H₁₄) Nitrous Acid (HONO) Heptane (C₇H₁₆) Benzene (C_cH_c) Methyl Nitrate (MeONO₂) Toluene $(C_{c}H_{c}CH_{2})$ Ammonia (NH₂) **Xylenes** Hydrogen Cyanide (HCN) Ethylbenzene (C₈H₁₀) Acetonitrile (CH₂CN) Methanol (CH₂OH) Propenenitrile (C₃H₃N) Phenol (C₆H₅OH) Propanenitrile (C_3H_5N) Formaldehyde (HCHO) Pyrrole (C₄H₅N) Carbonyl Sulfide (OCS) Glycolaldehyde (C₂H₄O₂) Acetaldehyde (CH₂CHO) Dimethyl Sulfide (C₂H₆S) Propanal (C_3H_6O) Sulfur Dioxide (SO₂) Methyl Bromide (CH₃Br) Hexanal $(C_6H_{12}O)$ Methyl Iodide (CH₃I) Acetone (C_3H_6O) Methacrolein (C₄H₆O) Trichloromethane (CHCl₃) Crotonaldehyde (C₄H₆O) **OC** Methyl Vinyl Ketone (C₄H₆O) BC 3-Pentanone ($C_{E}H_{10}O$) Total PM Furan (C_4H_4O) Total Particulate Carbon Formic Acid (HCOOH) PM₂₅ Acetic Acid (CH₂COOH) PM₁₀

Akagi et al., Atmos. Chem. & Phys., 2011

Estimating emissions from open burning

• Fire-Specific Estimates

- Biscuit Fire (Campbell et al., 2007)
- Black Saturday Fires Australia (Murphy et al., 2012)
- Regional Models
 - FLAMBE (Reid et al., 2008)
 - North America (Wiedinmyer et al., AE, 2006)
 - Himalaya (Vadrevu et al., AE, 2011)
 - Western U.S. (Urbanski, ACP, 2012)
 - Asia (Song et al., ERL, 2010)
 - Western Africa (Liousse et al., 2010)
- Global Models
 - GFED (van der Werf et al., AC&P, 2010 and others)
 - FINN (Wiedinmyer et al., GMD, 2011)
 - GFAS, (Kaiser et al. *Biogeosciences*, 2012)
 - QFED (Darmenov, A. S., and da Silva, A. 2015. *The Quick Fire Emissions Dataset (QFED): Documentation of versions 2.1, 2.2 and 2.4*. (R. D. Koster, Ed.) (Vol. 38). USA.)

Uncertainties in the emission models

K. Sindelarova, in prep

Uncertainties in the emissions

- Emission Factors
- Fire location/timing
- Fuel loadings
- Fuel Consumption

E. McDonald-Buller, C. Emery, C. Wiedinmyer 2013

Use of available datasets to predict emissions

- Fire area, location and timing
- Vegetation datasets
- Emissions (quantity, ratios, chemistry)
- Processing
- Evaluation

