

State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG) Institute of Atmospheric Physics Chinese Academy of Sciences

Ocean-Atmosphere interaction and Interannual monsoon variability

Tianjun ZHOU

zhoutj@lasg.iap.ac.cn

2nd ACAM Training School: Observation & modeling of atmospheric chemistry & aerosols in the Asian monsoon region

10-12 June 2017, Jinan University, Guangzhou China

1. Background

2. EASM and ENSO

3. ISM and ENSO

4. Concluding remarks

Space and time scales in the monsoon

Monsoon-ENSO co-variation

All-India Summer Monsoon Rainfall, 1871-2003

(Based on IITM Homogeneous Indian Monthly Rainfall Data Set)

Years

© Rupa Kumar Kolli, IITM, Pune, India (April 23, 2004)

East Asian summer rainfall

Zhou, T., D. Gong, J. Li, B. Li, 2009: Detecting and understanding the multi-decadal variability of the East Asian Summer Monsoon- Recent progress and state of affairs. Meteorologische Zeitschrift, 18 (4), 455-467

Zhou et al. 2009a How Well Do Atmospheric General Circulation Models Capture the Leading Modes of the Interannual Variability of the Asian-Australian Monsoon?, *Journal of Climate*, 22, 1159-1173

SST anomalies in El Nino decaying year

SON (0)

JJA (0)

D(0)JF (1)

MAM (1)

JJA (1)

Zhou et al. 2009a How Well Do Atmospheric General Circulation Models Capture the Leading Modes of the Interannual Variability of the Asian-Australian Monsoon?, *Journal of Climate*, 22, 1159-1173

The key question for interannual monsoon variability is to understand monsoon-ENSO tele-connection

1. Background

2. EASM and ENSO

3. ISM and ENSO

4. Concluding remarks

The following work highlight Indian Ocean SST forcing to EA climate:

Hu (1997 JGR);

- Guo Yufu (2004 AAS);
- Watanabe & Jin (2007 GRL);
- Yang et al. (2007) Xie et al. (2009) Indian Ocean capacitor;

Wu et al. (2009) seasonal dependence of Indian and western Pacific SSTA

Song, F., **T. Zhou**, 2014: Interannual Variability of East Asian Summer Monsoon Simulated by CMIP3 and CMIP5 AGCMs: Skill Dependence on Indian Ocean–Western Pacific Anticyclone Teleconnection. *J. Climate*, 27, 1679-1697.

Indian Ocean capacitor effect

(Xie et al. 2009 JC)

Ekman pumping

Contributions of Indian Ocean and western Pacific SSTA

Wu B et al. 2010. Journal of Climate, 23, 2974-2986

Point # 1

- the WNPAC is maintained by the combined effects of the local forcing of the negative SSTA in the WNP and the remote forcing from the IOBM.
- The former (latter) contribution gradually weakens (enhances) from June to August. The negative SSTA in the WNP is crucial for the maintenance of the WNPAC in early summer.
- The IOBM plays a crucial role in late summer via the Kelvin wave induced anticyclonic shear and boundary layer divergence.

Wu B., T.Li, and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during El Nino decaying summer. *Journal of Climate*, 23, 2974-2986

How about climate models' performances?

- 13 CMIP3 and 19 CMIP5 AMIP experiments.
- Observational and reanalysis data:
 - NCEP2: 850 hPa wind, air temperature;
 - GPCP: precipitation;
 - ERSST: SST;
- Period: 1980 to 1997.
- All the datasets are interpolated onto common grid
 - 2.5°x2.5°

Song, F., **T. Zhou,** 2014a: Interannual Variability of East Asian Summer Monsoon Simulated by CMIP3 and CMIP5 AGCMs: Skill Dependence on Indian Ocean-Western Pacific Anticyclone Teleconnection. *Journal of Climate*, 27, 1679-1697

• Southward shifts of the W. Pacific Anticyclone and the associated rainfall

anomalies over EA; Similar bias in CMIP3 & CMIP5 models

Song, F., **T. Zhou**, 2014: Interannual Variability of East Asian Summer Monsoon Simulated by CMIP3 and CMIP5 AGCMs: Skill Dependence on Indian Ocean–Western Pacific Anticyclone Teleconnection. *J. Climate*, 27, 1679-1697. ¹⁷

Indian Ocean-western Pacific anticyclone tele-connection

- Better Indian ocean
 positive precp, better
 Kelvin wave response.
- CMIP5 MME better than CMIP3 MME

Song Fengfei, Tianjun Zhou, 2014: Interannual Variability of East Asian Summer Monsoon Simulated by CMIP3 and CMIP518AGCMs: Skill Dependence on Indian Ocean–Western Pacific Anticyclone Teleconnection. J. Climate, 27, 1679–169718

Model and Data: air-sea coupling

- 17 CMIP5 AGCMs and corresponding CGCMs are analyzed
- Observational and reanalysis data:

- NCEP2&ERA40; GPCP&CMAP; ERSST

- the period for the comparison between AGCMs and CGCMs is 1979-2005
- All the datasets are interpolated into common grid 2.5°x2.5°

Shading: SST

AC

Green contour: positive precipitation **Purple contour:** negative precipitation **Vector:** 850 hPa winds

CGCM: SSTA over TEIO is warmer than the OBS.

♦ Warmer TEIO SSTA ->

more precipitation -> stronger Kelvin wave response as W. Pac AC ->

enhanced EASM simulation.

Local colder SST over the W.

Pac also enhances the W. Pac

Song, F., **T. Zhou,** 2014b, *Journal of Climate* 20

Schematic plot of the air-sea coupling's role in the EASM simulation

Song F., T. Zhou, 2014: The climatology and inter-annual variability of East Asian summer monsoon in CMIP5 coupled models: Does air-sea coupling improve the simulations ? *Journal of Climate*, 27, 8761-8777

Point # 2

Biases of AGCM:

Northward shift of the WP subtropical high in mean state;

Southward shift of the WP AC in interannual variability.

Improvements of CGCM

Mean state: Better WPSH at a cost of colder local SST.

Interannual variability: Improvements in WP AC location and intensity of monsoon rainfall anomaly, due to the enhanced IO-WPAC teleconnection through the air-sea coupling.

Dynamics:

More rainfall over the Indian Ocean associated with a warmer SST, and a stronger equatorial Kelvin wave response in the W. Pacific.

Song F., **T. Zhou**, 2014: The climatology and inter-annual variability of East Asian summer monsoon in CMIP5 coupled models: Does air-sea coupling improve the simulations ? *Journal of Climate*, 27, 8761-8777

1. Background

2. EASM and ENSO

3. ISM and ENSO

4. Concluding remarks

The 10 parameters (and their correlation coefficients with AIR*) are:

- 1. Arabian Sea SST (Jan and Feb) 0.55
- 2. Eurasian snow cover (Dec) -0.46
- 3. NW Europe Temperature (Jan) 0.46
- 4. NINO3 SST anomaly (Jul-Sep previous year) 0.42
- 5. South Indian Ocean SST (Mar) 0.47
- 6. East Asia Pressure (Feb and Mar) 0.61
- 7. Northern Hemisphere 50 hPa wind pattern (Jan) -0.51
- 8. Europe Pressure Gradient (Jan) 0.42
- 9. South Indian Ocean 850 hPa zonal wind (Jun) -0.45
- 10. NINO3.4 SST tendency (between Jan and Jun) -0.46

*AIR = All India Rainfall

Statistical forecast performance

- Performance of the previous IMD model (16 parameter power regression)
- Note the gradual deterioration in skill and the failure to predict the 2002 drought
- The correlations between *predictors* and *predictands* are not necessarily stationary in time, so dynamical models (coupled ocean-atmosphere GCMs) are beginning to be used for seasonal forecasting of the monsoon

Moving correlation between AIR and Niño-3 SST during JJAS

- The monsoon-ENSO teleconnection has been characterized by apparent recent weakening, but...
- Considerable interdecadal variability in the past
- Recent El Niño events (2002, 2004, 2009) have again been related to monsoon droughts of (81%, 87%, 78% LPA AIR)

Is recent "weakening" related to warming (e.g. Krishna Kumar et al., 1999)?

Courtesy: Andy Turner

- Ability of ENSO to * vary internally
- Modulation of •••• **ENSO** variance can alter teleconnection

0.4

0.2

0

-0.4

-0.6

-0.8

Coefficient

Correlation

CMIP5 and operational models' performances?

Mean JJAS precipitation (left) and bias versus GPCP obs (right)

Large biases in CMIP3 and CMIP5 models

See Sperber et al. (2013) Climate Dynamics

Performance in the MetUM GloSea5

MetUM shows more signal in Asian monsoon region for circulation

S/N defined as ratio of variance of interannual timeseries of ensemble mean to timemean of variances of ensemble for each year

Performance in the MetUM GloSea5

MetUM shows more signal in Asian monsoon region for circulation

Fig. 3 Grid-point anomaly correlations of GPCP JJA precipitation and ERA-Interim JJA vertical wind shear with their GloSea5-GC2 ensemble mean equivalents. Significant skill (0.44, p < 0.05) is shaded, while lower skill is contoured at 0.2 and 0.4

From Johnson et al. (2016) Clim. Dyn.

Performance in the MetUM GloSea5

Large-scale circulation measures outperform localized rainfall

From Johnson et al. (2016) Clim. Dyn.

Point # 3

- The Indian summer monsoon prediction traditionally relies on statistical model, but the recent decades witnessed a gradual deterioration in skill and the failure to predict the 2002 drought.
- The monsoon-ENSO teleconnection has been characterized by apparent recent weakening. Modulation of ENSO variance can alter the monsoon-ENSO teleconnection.
- CMIP models show large biases in monsoon rainfall simulation. There exists intimate connection between biases in monsoon circulation and precipitation.
- MetUM GloSea-5 shows more signal in Asian monsoon region for circulation.

THANKS

http://www.lasg.ac.cn/staff/ztj