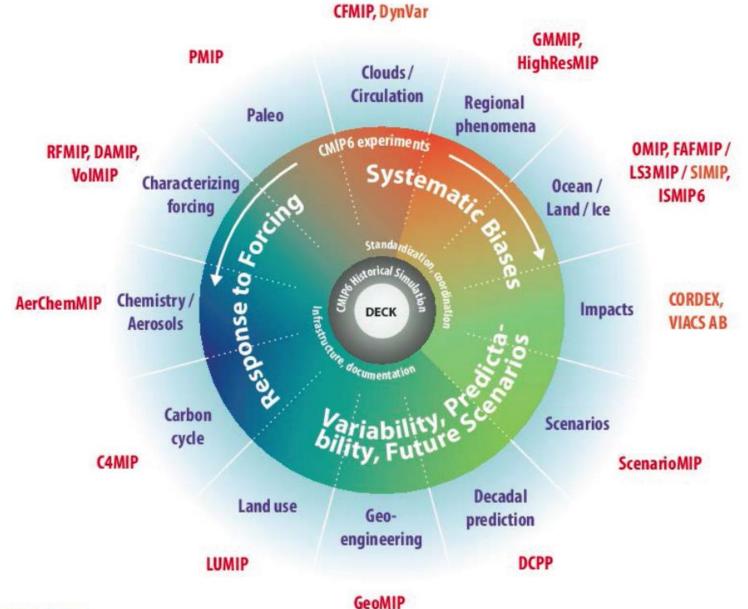


State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG) Institute of Atmospheric Physics Chinese Academy of Sciences

GMMIP for CMIP6

Tianjun ZHOU


zhoutj@lasg.iap.ac.cn

2nd ACAM Training School: Observation & modeling of atmospheric chemistry & aerosols in the Asian monsoon region

10-12 June 2017, Jinan University, Guangzhou China

21 CMIP6-Endorsed MIPs

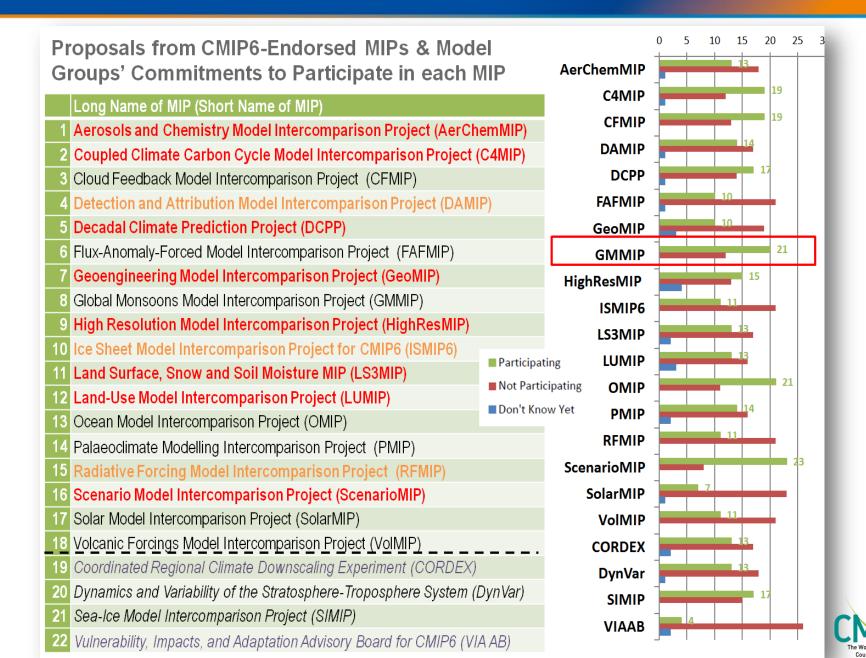
Diagnostic MIPs

Global Monsoons Model Inter-comparison Project

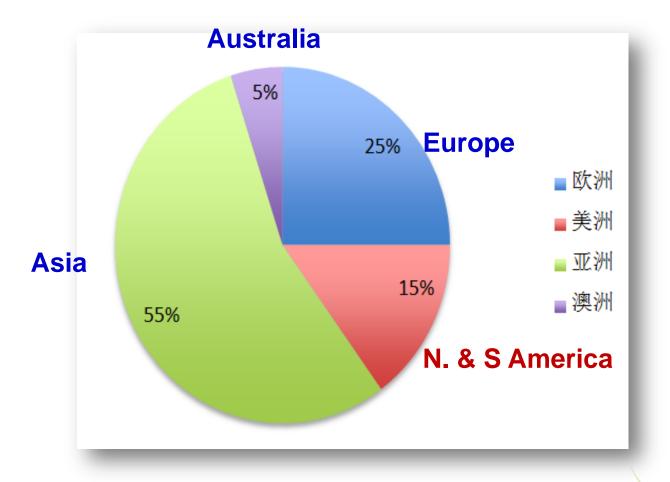
• One of the 18(21) MIPs for WCRP CMIP6

Proposed by former CLIVAR AAMP, now

CLIVAR/GEWEX Monsoons Panel & CLIVAR/C20C+


Co-chairs: Tianjun Zhou, Andy Turner, James Kinter III

Secretariat: IAP,CAS



Model Groups' Commitments to participate in each MIP

Model groups' commitment to participate in GMMIP

21 model groups from 14 countries

The World Climate Research Programme's Coupled Model Intercomparison Project

GMMIP Partner Institutes

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-69, 2016 Manuscript under review for journal Geosci. Model Dev. Published: 11 April 2016 © Author(s) 2016. CC-BY 3.0 License.

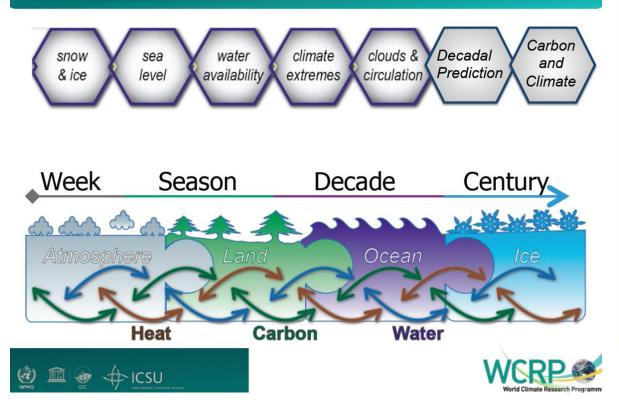
Table 1. Description of models participating GMMIP

Model	Institute/Country	
ACCESS	CSIRO-BOM/Australia	
BCC-CSM2-MR	BCC/China	
BNU-ESM	BNU/China	
CAMS-CSM	CAMS/China	
CanESM	CCCma/Canada	
CAS-ESM	CAS-IAP/China	
CESM	NCAR-COLA/USA	
CESS-THU	THU/China	
CMCC	CMCC/Italy	
CNRM-CM	CNRM-CERFACS/France	
FGOALS	IAP-LASG/China	
FIO	FIO/China	
GFDL	NOAA-GFDL/USA	
GISS	NASA-GISS/USA	
HadGEM3	MOHC-NCAS/UK	
IITM	IITM/India	
IPSL-CM6	IPSL/France	
MIROC6-CGCM	AORI-UT-JAMSTEC-NIES/Japan	
MPI-ESM	MPI-M/Germany	
MRI-ESM1.x	MRI/Japan	
NUIST-CSM	NUIST/China	

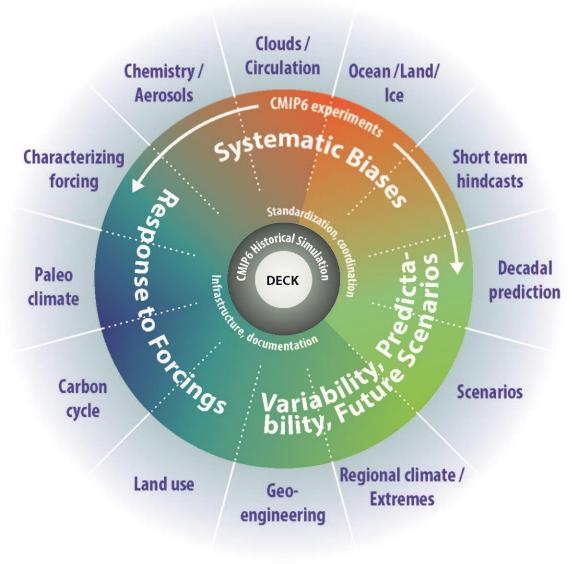
Zhou T., A. Turner, J. Kinter, B. Wang Y. Qian et al. 2016, Geosci. Model Dev., 9, 1-16

Why do we propose GMMIP ?

Forcings to GM changes



- Increasing evidences indicate that the observed monsoon changes are driven by both internal (IPO & AMO) and external forcing agents.
- But the understanding of the underlying mechanisms are model-dependent, in particular for precipitation.
- A multi-model inter-comparison is crucial.
- CMIP6 provides an excellent opportunity for the community.


- 1. What are the relative contributions of internal processes and external forcings that have driven the 20th century historical evolution of global monsoons?
- 2. To what extent and how does the ocean-atmosphere interaction affect the interannual variability and predictability of monsoons?
- 3. How well can developing high-resolution models and improving model dynamics and physics help to reliably simulate monsoon precipitation and its variability and change?
- 4. What are the effects of Eurasian orography, in particular the Himalaya/Tibetan Plateau, on the regional/global monsoons?

WCRP Grand Challenges

The Seven Grand Challenges of WCRP

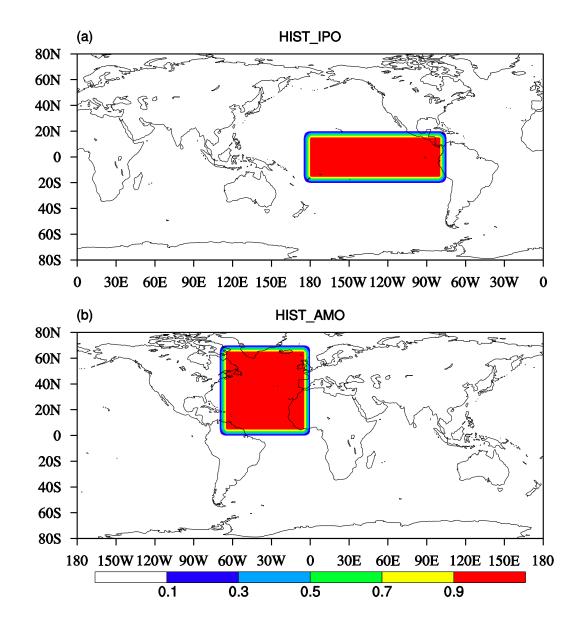
GMMIP will address the
WCRP Grand Challenges in
the following ways:
1.Water availability (*Rank-1*),
2.Clouds, circulation and climate sensitivity (*Rank-2*),
3.Climate extremes (*Rank-2*)

Diagnosis, Evaluation, and Characterization of Klima (DECK) Experiments

DECK (entry card for CMIP) i.AMIP simulation (~1979-2014) **ii.Pre-industrial control simulation** iii.1%/yr CO₂ increase iv.Abrupt 4xCO₂ run

CMIP6 Historical Simulation (entry card for CMIP6) v.Historical simulation using

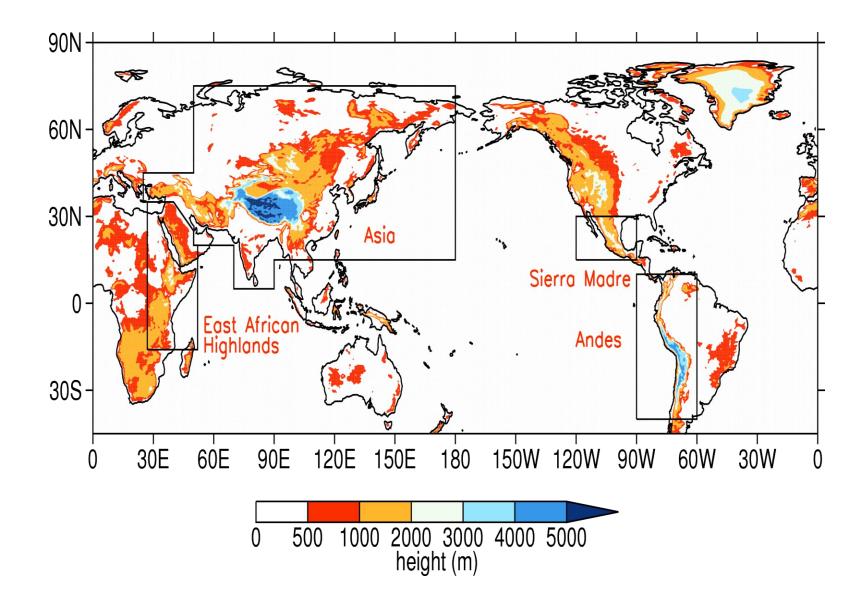
CMIP6 forcings (1850-2014)


(Courtesy of Veronika Eyring)

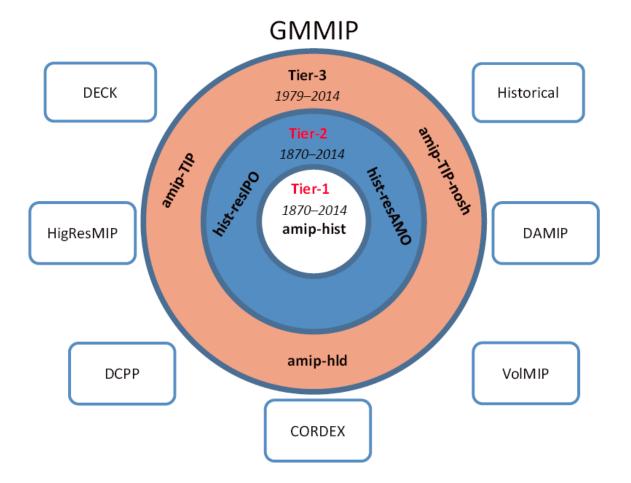
Main Experiments

All the GMMIP partners are encouraged to conduct both the Tier-1 and Tier-2 experiments.

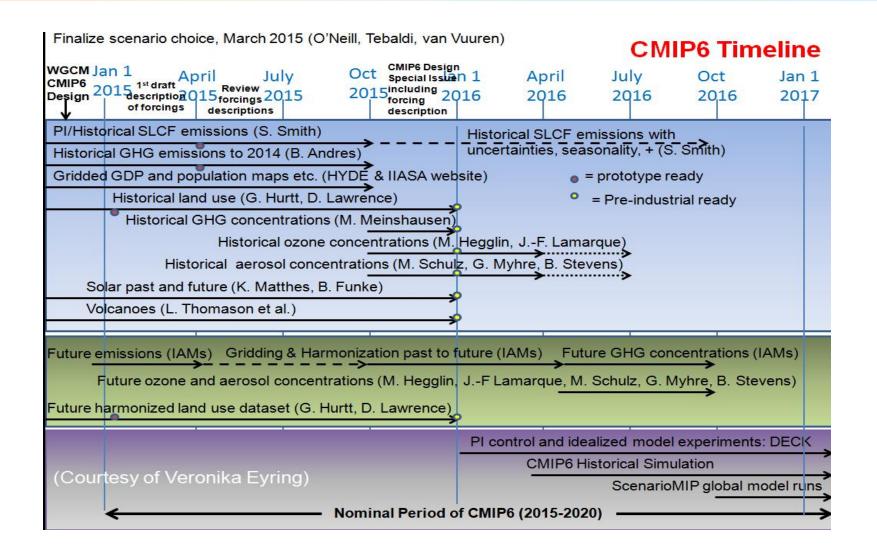
	EXP name	Integration time	Description	Model type	Motivation
Tier-1	AMIP 20C	1870-2014	Extended AMIP run that covers 1870-2014.	AGCM run, min realization 3	understand the roles of SST forcing and external forcings
Tier-2	HIST- IPO	1870-2014	Pacemaker 20th century historical run that includes all forcing as used in CMIP6 Historical Simulation, and the observational historical SST is restored in the tropical lobe of the IPO domain (20° S-20° N, 175° E-75° W)	CGCM min realization 3	understand the forcing of IPO-related tropical SST to global monsoon changes.
	HIST- AMO	1870-2014	Same as HIST-IPO, but the observational historical SST is restored in the AMO domain $(0^{\circ} -70^{\circ} \text{ N}, 70^{\circ} \text{ W-0}^{\circ})$	CGCM min realization 3	understand the forcing of AMO-related SST to global monsoon changes


IPO、AMO Pacemaker Exps

Tiered Experiments


	EXP name	Integration time	Description	Model type	Motivation
Tier-3	DTIP	1979-2014	The topography of the TIP is modified by setting surface elevations to 500m	AGCM run, min realization 1	Understanding the combined thermal and mechanical forcing of the TIP.
	DTIP- DSH	1979-2014	Surface sensible heat released at the elevation above 500m over the TIP is not allowed to heat the atmosphere	AGCM run, min realization 1	Understanding the thermal forcing of the TIP
	DHLD	1979-2014	The topography of the highlands in Africa, N. America and S. America TP is modified by setting surface elevations to a certain height (500m),	AGCM run min realization 1	Understanding the combined thermal and mechanical forcing of other plateaus except the TIP.

Orography regions specified for the Tier-3 experiments


- DAMIP (understand the contributions from anthropogenic factors and natural forcing)
- HighResMIP (understanding the impact of highresolution in reproducing global monsoon)
- VolMIP (understanding the effects of volcanism on global monsoon)
- DCPP (skills of global monsoons in decadal climate prediction)

GMMIP Exps and related other MIPs

Figure 3. Three-tier experiments of GMMIP and its connections with DECK, historical simulation and endorsed MIPs.

Data to be available in middle 2017

CMIP6 Timeline

Concluding Remarks

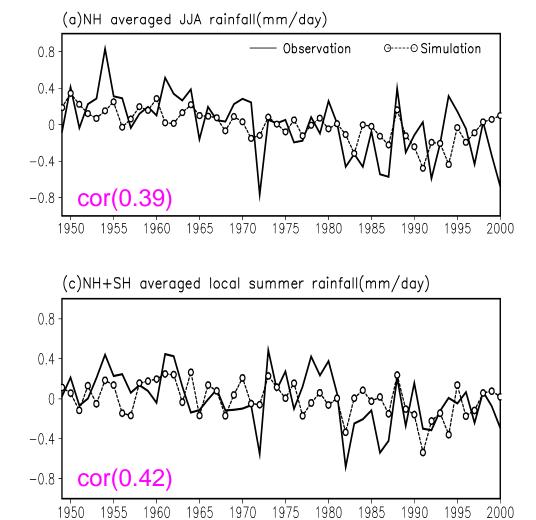
- Global monsoons have undergone significant long term changes in the past century.
- Both the internal (IPO and AMO) and the external forcing (GHG, aerosol) contributes to the changes, but their relative contributions are still unclear.
- GMMIP will focus on the understanding of dynamical & physical processes dominating the changes of global monsoon systems.
- It provides a good platform for the climate modeling community in monsoon studies.

Geosci. Model Dev., 9, 1–16, 2016 www.geosci-model-dev.net/9/1/2016/ doi:10.5194/gmd-9-1-2016 © Author(s) 2016. CC Attribution 3.0 License.

GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project

Tianjun Zhou¹, Andrew G. Turner², James L. Kinter³, Bin Wang⁴, Yun Qian⁵, Xiaolong Chen¹, Bo Wu¹, Bin Wang¹, Bo Liu^{1,6}, Liwei Zou¹, and Bian He¹

¹LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
 ²NCAS-Climate and Department of Meteorology, University of Reading, Reading, UK
 ³Center for Ocean-Land-Atmosphere Studies & Dept. of Atmospheric, Oceanic & Earth Sciences, George Mason University, Fairfax, Virginia, USA
 ⁴Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
 ⁵Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
 ⁶College of Earth Science, Graduate University of the Chinese Academy of Sciences, Beijing 100049, China


Correspondence to: Tianjun Zhou (zhoutj@lasg.iap.ac.cn)

Received: 30 March 2016 – Published in Geosci. Model Dev. Discuss.: 11 April 2016 Revised: 3 September 2016 – Accepted: 14 September 2016 – Published:

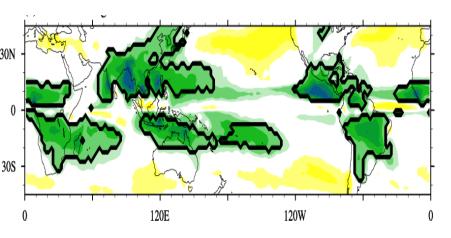
THANKS

http://www.lasg.ac.cn/gmmip

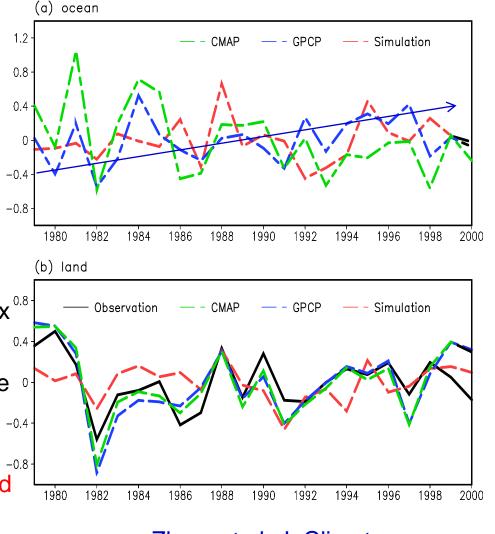
The time evolution of land monsoon precipitation in the observation and the simulation

♦ The observed monsoon index show a decreasing trend across the entire 50 years, and particularly before 1980s.

◆The observed decreasing trend is found in the simulation, although slightly weaker than the observation.

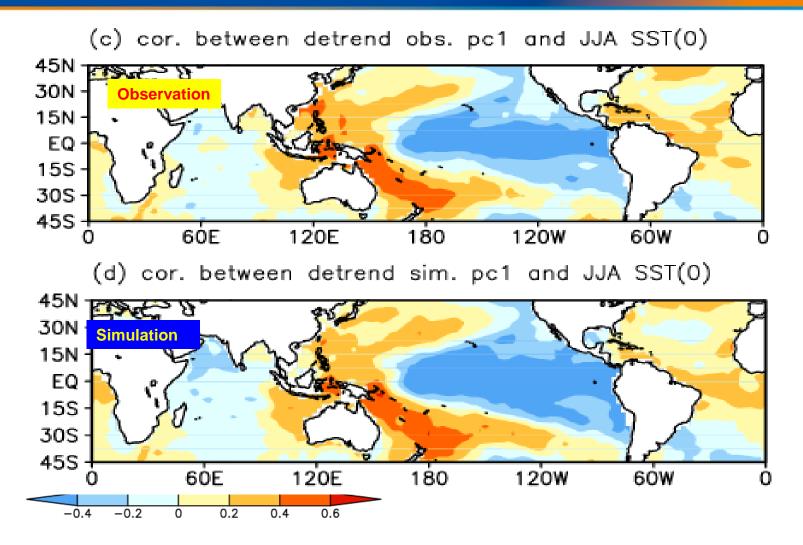

-0.36mm/day/50year in simulation

-0.59mm/day/50year in observation


Zhou et al. 2008 Ocean forcing to changes in global monsoon precipitation over the recent half century, *Journal of Climate*, **21** (15), 3833–3852

Monsoon precipitation changes in global land and ocean

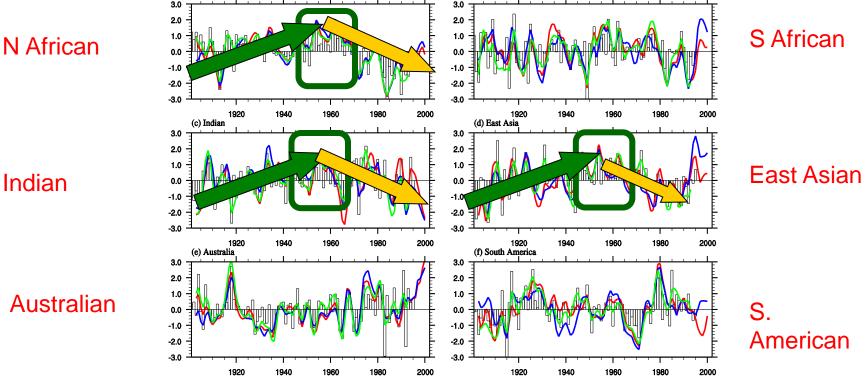
areas



- There is barely any correspondence between the simulation and the observation in the global monsoon index 0.4 over the ocean area.
- This discrepancy might arise from the ouncertainty of observational data.
- ♦ The CMAP and GPCP data show ______ confusing results on the increasing trend of oceanic monsoon index.

Zhou et al. J. Climate (2008)

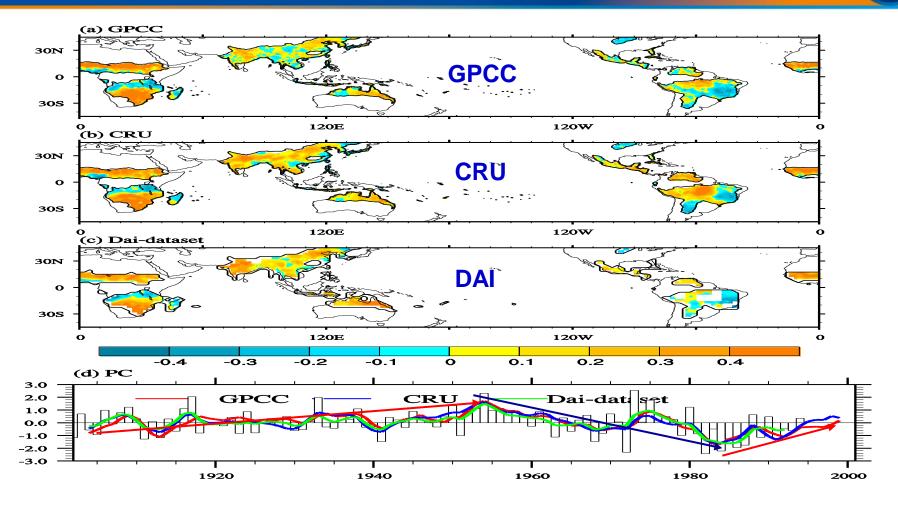
Correlation at interannual time scale


Zhou et al. 2008 Ocean forcing to changes in global monsoon precipitation over the recent half century, *Journal of Climate*, **21** (15), 3833–3852

Precipitation changes for regional monsoons

(a) North Africa

(b) South Africa


Wetter around 1950: North African, Indian and East Asian monsoon.

1901-1955: upward trend the North African monsoon, Indian monsoon and East Asian monsoon.

1955-2001: decreasing trends North African, Indian and EA monsoon.

Zhang Lixia, and Tianjun Zhou, 2011: An assessment of monsoon precipitation changes during 1901–2001, Climate Dynamics, , 37, 279-296, DOI 10.1007/s00382-011-0993-5

EOF1 of Global land Monsoon Precipitation

Majority of global land monsoon precipitation show coherent change.

PC: increasing trend during 1901-1955, decreasing trend since the 1950s, and followed by a recovery since the 1980s.

Zhang Lixia, and Tianjun Zhou, 2011: Climate Dynamics, , 37, 279-296