ILS and alignment revisited

David Griffith, Voltaire Velazco University of Wollongong

with very significant inputs from John Robinson (Lauder) Frank Hase (KIT) Graham Kettlewell (UoW)

IFS125 FT spectrometer

Figure 20: IFS 125 HR - Optical path

IFS125 interferometer

The IR beam path

Some important points

- The IR and laser alignment are independent of eachother
 There are no shared adjustments
- Laser affects wavenumber scale, does not affect ILS
- IR alignment affects the ILS
- There are two alignment methods on the wiki
- 1. Caltech/JPL method (Blavier, Washenfelder, Wunch)
 - 1. Align the laser for max modulation (=> on interferometer axis)
 - 2. Locate IR axis (input & exit apertures) on the laser axis
 - 3. Iteratively adjust the apertures and fixed CC for best ILS
- 2. Karlsruhe method (Hase, Blumenstock)
 - Align IR axis (ie apertures) to centre on the Haidinger fringes at large OPD
 - 2. Align fixed corner cube to centre fringes near ZPD
 - 3. Align laser for either max modulation or centre on IR axis

Align 5.4 Perfect alignment

FOV 3mrad off axis

Fixed CC shear 0.05mm

Align the IR 1: fringes

- Illuminate entrance stop with beam expanded HeNe laser
 - Vellum on aperture to diffuse beam
- Fold exit beam upwards and view image at exit stop focus with eyepiece or USB microscope
 - Alternative: remove exit OAP and view through external telescope
- Observe fringes and image of entrance stop while adjusting entrance stop position at mid - long OPD
- Observe fringes around ZPD while adjusting fixed CC position

Viewing fringes

Align the IR 2: exit stop

- Mount a telescope in the scanner arm and view the entrance and exit stops
 - First focus it to infinity => focuses parallel beam
- Adjust exit stop to centre on the entrance stop
 - It is normally one setting larger
- After laser alignment, can also check alignment of laser relative to stops

Misaligned

Co-aligned, with laser

Align the laser

- Make laser path parallel to the interferometer axis
 - Adjust input mirrors/prisms, and detector collection OAP
- Two methods
- 1. Maximise modulation (laser interferogram) at max OPD
- 2. Coalign to the IR beam after IR alignment
 - Via Haidinger fringes or apertures.

Equipment

- A. Telescope and improvised holder
- B. Rail to hold the telescope above the scanner arm of the IFS-125
- C. USB microscope
- D. Periscope eyepiece
- E. Periscope mount and flat reflecting mirror
- F. HeNe laser with beam expander and mount
- G. HeNe Laser power supply
- H. Vellum and paper for blocking laser beams

Laser and fringe viewer

HeNe laser

Folding mirror and eyepiece/microscope holer

Telescope mounted in scanner arm

USB microscope

US Microscope: typical specs:

Main Features:

- Adjustable LEDs for object illumination
- 1.3 Megapixel lens
- Measurement function using enclosed software
- Snapshot and video recording function
- Alloy stand and stand alone capture button
- Tacton rubber touch housing
- 20x or 200x magnification

- Fine slider adjustment for brightness, hue, saturation and sharpness, plus a black and white display mode

- VMS-001 USB Microscope is supplied with Windows and Mac drivers. For software for side-loading CD drives just visit the download centre

- The 1.3 megapixel CMOS lens can be adjusted to point in any direction using the movable arm

- Simply install the drivers, plug the microscope into your computer via the USB and you're ready to go

The result

But wait, we have a problem ...

- 3 cells @ Wollongong, 3 different ILSs !
- Absolute retrieved ILS / ME depends on:
 - Pressure HCl in cell
 - Pressure air in cell
 - Hitran linewidths and strengths
- Measurement of one cell does NOT define the ILS / ME
- Refer to Frank Hase's telecon paper from May 2013
 - Some cells appear to have air in them (up to 1 mb?)
 - Retrieved ME depends on choice of P_{total}, P_{HCI} in linefit
 - Frank uses C2H2 cell to define ILS and ME
- Sensitivity:
 - $\Delta P_{HCI} = 1 \text{ mb} \qquad \Rightarrow \qquad \Delta ME = 5\%$
 - $\Delta ME = 1\%$ => $\Delta X_{CO2} = 0.01\% = 0.04 \text{ ppm}$

The end

- We need to agree on how to manage this
- Await Frank's analysis of all cells and updating his telecon paper
- Thanks especially to John Robinson, NIWA, for the tips on implementing Frank and Thomas's alignment procedure.

IFS125 interferometer

IFS125 interferometer

