The NCAR Trace Organic Gas Analyzer with Time of Flight mass spectrometer (TOGA-TOF)

The TOGA-TOF is an in-situ online gas chromatograph mass spectrometer (GC-MS) that provides nearcontinuous atmospheric mixing ratios of an extensive and growing list of volatile organic compounds (VOCs) in the C_1 - C_{10} molecular structure range. The list of species that can be quantified using TOGA-TOG includes alkanes, alkenes, aromatics, halogenated VOCs, nitrates, nitriles, sulfides, alcohols, ketones, aldehydes, esters, and ethers. One hundred or more unique trace gases can be measured, with sufficient sensitivity to measure trace species in the remote background atmosphere and dynamic range to measure in highly polluted regions. Table 1 is a list of species that have been identified and/or quantified using the TOGA-TOF, as well as typical limits of detection where known.

The TOGA-TOF uses a cryogenic preconcentrator, consisting of a custom-built liquid nitrogen (LN2) dewar and a system of traps, for water removal, sample enrichment, and cryofocusing of trace constituents. A high-resolution electron impact time-of-flight mass spectrometer (HR-EI-TOF-MS; Tofwerk, Switzerland) is used to identify and quantify individual compounds, using Igor-based software packages developed by Tofwerk and Aerodyne Research Inc. System calibrations and blanks are performed using a catalytic-clean air generator/dynamic dilution system with accurate (±1%) and precise (±1%) calibration gas delivery. The system operates continuously, allowing for frequent calibrations and zeros during flight. The TOGA-TOF inlet is a recently-designed constant mass flow design to mitigate the intrusion of aerosols and allow for calibrations and system blanks through the inlet and associated tubing. The TOGA-TOF is contained in an elongated HIAPER rack standard DC-8 rack, weighs less than 200 kg and consumes ~1 kW of power. More information on the TOGA and TOGA-TOF can be found here: https://www2.acom.ucar.edu/voc-measurements/measurement-instrumentation.

NMHCs	Formula	LOD; ppt	OVOCs	Formula	LOD; ppt	OVOCs	Formula	LOD; ppt	Halogenated VOCs	Formula	LOD; ppt
Alkanes			Aldehydes			Ethers/Furans (cont'd)			Methyl chloride	CH ₃ CI	1
Propane	C ₃ H ₈	5	Formaldehyde	CH₂O	20	2-Methylfuran	C ₅ H ₆ O	0.5	Dichloromethane	CH ₂ Cl ₂	1
Isobutane	C ₄ H ₁₀	1	Acetaldehyde	C ₂ H ₄ O	5	3-Methylfuran	C ₅ H ₆ O	0.5	Chloroform	CHCl ₃	1
n-Butane	C ₄ H ₁₀	1	Propanal	C_3H_6O	2	2,3-Dimethylfuran	C ₆ H ₈ O	TBD	Tetrachloromethane	CCI ₄	1
Isopentane	C ₅ H ₁₂	1	Isobutanal	C ₄ H ₈ O	TBD	2,4-Dimethylfuran	C ₆ H ₈ O	TBD	Tetrachloroethene	C_2CI_4	0.1
n-Pentane	C ₅ H ₁₂	1	Butanal	C ₄ H ₈ O	1	2,5-Dimethylfuran	C ₆ H ₈ O	TBD	1,2-Dichloroethane	$C_2H_4CI_2$	0.5
2-Methylpentane	C ₆ H ₁₄	0.5	Acrolein	C ₃ H ₄ O	1	2-Ethylfuran	C ₆ H ₈ O	TBD	Methyl chloroform	C2H ₃ Cl ₃	0.5
3-Methylpentane	C ₆ H ₁₄	0.5	Methacrolein	C ₄ H ₆ O	1	3-Ethylfuran	C ₆ H ₈ O	TBD	Methyl bromide	CH ₃ Br	1
n-Hexane	C ₆ H ₁₄	0.5	2-Butenal	C_4H_6O	2	2-Vinylfuran	C ₆ H ₆ O	TBD	Dibromomethane	CH_2Br_2	0.03
n-Heptane	C ₇ H ₁₆	1	Furfural	$C_5H_4O_2$	TBD	3-Vinylfuran	C ₆ H ₆ O	TBD	Bromoform	CHBr ₃	0.1
2,2,4-Trimethylpentane	C ₈ H ₁₈	0.5	3-Furaldehyde	$C_5H_4O_2$	TBD	1,3-Dioxolane	$C_3H_6O_2$	TBD	Methyl iodide	CH₃I	0.03
n-Octane	C ₈ H ₁₈	0.5	Ketones						Diiodomethane	CH ₂ I ₂	0.05
Alkenes			Acetone	C ₃ H ₆ O	5	Nitrogen-containing VOCs	Formula	LOD; ppt	Ethyl iodide	C₂H₅I	0.5
Propene	C_3H_6	5	MEK	C ₄ H ₈ O	0.5	Nitriles			Chloroiodomethane	CH ₂ ICI	0.05
1-Butene/Isobutene	C_4H_8	1	MVK	C ₄ H ₆ O	0.5	Hydrogen cyanide	HCN	5	Bromodichloromethane	CHBrCl ₂	0.05
cis-2-Butene	C_4H_8	1	2,3-Butanedione	$C_4H_6O_2$	TBD	Chlorine cyanide	CICN	TBD	Dibromochloromethane	CHBr ₂ Cl	0.03
trans-2-Butene	C_4H_8	1	Alcohols			Acetonitrile	C_2H_3N	1	CFC-11	CCI₃F	5
Isoprene	C₅H ₈	1	Methanol	CH₄O	5	Propanenitrile	C_3H_5N	1	CFC-12	CCI_2F_2	1
α-Pinene	$C_{10}H_{16}$	1	Ethanol	C_2H_6O	2	Acrylonitrile	C_3H_3N	1	CFC-113	$C_2CI_3F_3$	1
β-Pinene/Myrcene	$C_{10}H_{16}$	1	2-Propanol	C_3H_8O	4	Methylacrylonitrile	C₄H₅N	2	CFC-114	$C_2CI_2F_4$	1
Camphene	$C_{10}H_{16}$	1	Ethenol	C_2H_4O	TBD	Nitrates			HCFC-22	CHCIF2	1
Limonene/3-Carene	$C_{10}H_{16}$	1	MBO (2-Methyl-3-Buten-2-ol)	C ₅ H ₁₀ O	1	Methyl nitrate	CH ₃ NO ₃	TBD	HCFC-141b	C ₂ H ₃ Cl ₂ F	1
Tricyclene	$C_{10}H_{16}$	1	Esters			Ethyl nitrate	$C_2H_5NO_3$	TBD	HCFC-142b	C ₂ H ₃ CIF ₂	TBD
Aromatics			Methyl formate	$C_2H_4O_2$	TBD	Isopropyl nitrate	C ₃ H ₇ NO ₃	2	HFC-134a	$C_2H_4F_4$	1
Benzene	C ₆ H ₆	0.3	Methyl acetate	$C_3H_6O_2$	TBD	n-Propyl nitrate	C ₃ H ₇ NO ₃	2			
Toluene	C ₇ H ₈	0.3	Methyl propionate	C4H8O2	TBD	t-Butyl nitrate	C ₄ H ₉ NO ₃	2	Sulfur-containing VOCs	Formula	LOD; ppt
Ethylbenzene	C ₈ H ₁₀	0.2	Ethyl acetate	$C_4H_8O_2$	TBD	2-Butyl+Isobutyl nitrate	$C_4H_9NO_3$	2	Carbonyl sulfide	OCS	1
p-/m-Xylene	C ₈ H ₁₀	0.2	Ethers/Furans			n-Butyl nitrate	C ₄ H ₉ NO ₃	2	Carbon disulfide	CS ₂	0.2
o-Xylene	C ₈ H ₁₀	0.2	MTBE (Methyl t-butyl ether)	$C_5H_{12}O$	0.3	Other			Methanethiol	CH ₄ S	TBD
Styrene	C ₈ H ₈	0.1	Furan	C ₄ H ₄ O	1	Pyrrole	C₄H₅N	TBD	DMS (Dimethyl sulfide)	C ₂ H ₆ S	1
Ethynylbenzene	C ₈ H ₆	TBD	THF (Tetrahydrofuran)	C ₄ H ₈ O	TBD	Nitromethane (CH ₃ NO ₂)	CH ₃ NO ₂	TBD	Carbon suboxide	C ₃ O ₂	TBD

Table 1. Chemical species identified using the TOGA-TOF and limits of detection (LOD) where known.

Measurements:

VOCs

Aircraft:

Gulfstream V – NSF, C-130 – NSF, DC-8 - AFRC

Measurement Characteristics:

Overall estimate of uncertainty: VOC dependent, typically 20%.

Precision: 3% or less.

Response time: typically 35-second samples on a 2-minute cycle, with the option for a shorter, targeted sample.

Instrument Type:

Gas chromatography, Time-of-Flight Mass Spectrometry (in situ)

Point(s) of Contact:

Eric Apel (POC; PI)